Loading...
Search for: nano-composite-membranes
0.011 seconds

    Effect of CVD parameters on hydrogen permeation properties in a nano-composite SiO 2-Al 2O 3 membrane

    , Article Journal of Membrane Science ; Volume 423-424 , 2012 , Pages 530-535 ; 03767388 (ISSN) Amanipour, M ; Ganji Babakhani, E ; Safekordi, A ; Zamaniyan, A ; Heidari, M ; Sharif University of Technology
    2012
    Abstract
    Tubular ceramic membranes were synthesized by depositing a dense layer of silica-alumina on top of a multilayer substrate using co-current chemical vapor deposition (CVD) method. The multilayer substrate was prepared by coating with a series of bohemite sols with certain particle sizes. Cross-sectional and surface images obtained from high resolution FESEM showed that the intermediate layer had a thickness of about 1μm and the top selective layer was uniform and dense with a thickness of less than 100nm. Permeance tests, which were carried out with H 2, CO 2, N 2 and CH 4 at a high temperature range of 923-1073K, indicated that gas permeation took place via different mechanisms through... 

    Effect of synthesis conditions on performance of a hydrogen selective nano-composite ceramic membrane

    , Article International Journal of Hydrogen Energy ; Volume 37, Issue 20 , October , 2012 , Pages 15359-15366 ; 03603199 (ISSN) Amanipour, M ; Safekordi, A ; Ganji Babakhani, E ; Zamaniyan, A ; Heidari, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    A hydrogen-selective nano-composite ceramic membrane was prepared by depositing a dense layer composed of SiO2 and Al2O 3 on top of a graded multilayer substrate using co-current chemical vapor deposition (CVD) method. The multilayer substrate was made by dip-coating a macroporous α-alumina tubular support by a series of boehmite solutions to get a graded structure. Using DLS analysis, it was concluded that decreasing hydrolysis time and increasing acid concentration lead to smaller particle size of boehmite sols. XRD analysis was carried out to investigate the structure of intermediate layer and an optimized calcination temperature of 973 K was obtained. SEM images indicated the formation... 

    Fabrication or preparation and characterization of new modified MCM-41/PSf nanocomposite membrane coated by PDMS

    , Article Separation and Purification Technology ; Volume 80, Issue 3 , August , 2011 , Pages 556-565 ; 13835866 (ISSN) Jomekian, A ; Pakizeh, M ; Shafiee, A. R ; Mansoori, S. A. A ; Sharif University of Technology
    2011
    Abstract
    MCM-41 nanoparticles were prepared by in situ assembly of inorganic precursors and CTAB. The structure of nanoparticles was characterized by XRD, TEM, particle size analysis, N2 adsorption techniques. The surface modification of particles in order to perfect dispersion in polysulfone (PSf) matrix was performed by dimethyldichlorosilane (DMDCS) and aminopropyltrimethoxysilane (APTMS) as new modification agents. Thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and SEM analysis were applied to investigate thermal stability, glass transition temperature and quality of distribution of particle in the nanocomposite membrane, respectively. The PDMS was used to coat the... 

    Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles

    , Article Separation and Purification Technology ; Volume 156 , 2015 , Pages 299-310 ; 13835866 (ISSN) Rabiee, H ; Vatanpour, V ; Davood Abadi Farahani, M. H ; Zarrabi, H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, modification of polyvinyl chloride (PVC) ultrafiltration membranes with zinc oxide (ZnO) nanoparticle addition was taken into consideration. The ZnO at five different weights was added to the polymeric solution, and the membranes were fabricated by the phase inversion method using water as a nonsolvent and PEG 6 kDa as a pore former additive. The results showed that the pure water flux of the modified membranes increased up to 3 wt% ZnO addition, which was the optimized amount of the nanoparticle addition in this study. Also, at 3 wt% ZnO addition, flux recovery ratio reached from 69% to above 90%, indicated that the nanocomposite membranes were less susceptible to be fouled.... 

    Polyelectrolyte nanocomposite membranes using imidazole-functionalized nanosilica for fuel cell applications

    , Article Journal of Macromolecular Science, Part B: Physics ; Volume 54, Issue 1 , Nov , 2015 , Pages 17-31 ; 00222348 (ISSN) Tohidian, M ; Ghaffarian, S. R ; Nouri, M ; Jaafarnia, E ; Haghighi, A. H ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    The preparation and characterization of a new type of nanocomposite polyelectrolyte membrane, based on DuPont Nafion/imidazole-modified nanosilica (Im-Si), for direct methanol fuel cell applications is described. Related to the interactions between the protonated imidazole groups, grafted on the surface of nanosilica, and negatively charged sulfonic acid groups of Nafion, new electrostatic interactions can be formed in the interface of Nafion and Im-Si which result in both lower methanol permeability and also higher proton conductivity. Physical characteristics of these manufactured nanocomposite membranes were investigated by scanning electron microscopy, thermogravimetry analysis,... 

    Fabrication and evaluation of nanocomposite membranes of polyethersulfone/α-alumina for hydrogen separation

    , Article Iranian Polymer Journal (English Edition) ; Volume 24, Issue 3 , 2015 , Pages 171-183 ; 10261265 (ISSN) Farrokhnia, M ; Rashidzadeh, M ; Safekordi, A ; Khanbabaei, G ; Sharif University of Technology
    Springer-Verlag London Ltd  2015
    Abstract
    In this study, polyethersulfone (PES)-based nanocomposite membranes with the incorporation of inorganic filler of α-alumina were prepared via thermal phase inversion method. The fabricated flat sheet-mixed matrix membranes were characterized using X-ray diffraction, thermal gravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and atomic force microscope analysis, and the permeation tests were performed for hydrogen, nitrogen and carbon dioxide. Also prepared α-alumina particles were identified by X-ray diffraction and the surface area, total pore volume and average pore diameter of particles were measured with a high-speed gas-sorption analyzer. The... 

    Effect of casting solvent on the characteristics of nafion/TiO2 nanocomposite membranes for microbial fuel cell application

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 1 , 2016 , Pages 476-482 ; 03603199 (ISSN) Bazrgar Bajestani, M ; Mousavi, S. A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Synthesis and characterization of Nafion/TiO2 membranes (TiO2 1 wt%) with different solvents (DMF, DMAc, NMP) for proton exchange membrane operating at Microbial Fuel Cell (MFC) was investigated in this study. Nanocomposite membranes are studied due to their better physical properties and higher production voltage in comparison with Nafion 112 in MFC systems. Nafion/TiO2 nanocomposite membranes were prepared by solution casting Method. The structures of membranes were investigated by Scanning Electron Microscopy (SEM). In addition, water uptake, proton conductivity, and ion exchange capacity (IEC) of membranes were measured and compared with Nafion 112 in microbial fuel cell. The... 

    On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide

    , Article Materials Science and Engineering C ; Volume 70 , 2017 , Pages 121-131 ; 09284931 (ISSN) Mahmoudi, N ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Nanofibrous structures that mimic the native extracellular matrix and promote cell adhesion have attracted considerable interest for biomedical applications. In this study, GO-modified nanofibrous biopolymers (GO) were prepared by electrospinning blended solutions of chitosan (80 vol%), polyvinyl pyrrolidone (15 vol%), polyethylene oxide (5 vol%) containing GO nanosheets (0–2 wt%). It is shown that GO nanosheets significantly change the conductivity and viscosity of highly concentrated chitosan solutions, so that ultrafine and uniform fibers with an average diameter of 60 nm are spinnable. The GO-reinforced nanofibers with controlled pore structure exhibit enhanced elastic modulus and... 

    Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions

    , Article Chemical Engineering Communications ; 2018 ; 00986445 (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Maleki, A ; Alimohammadi, M ; Jafari, A ; Hemmati Borji, S ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    In this study, four types of mixed matrix membranes were fabricated using polysulfone (as the base polymer) and different contents of graphene oxide (GO) nanosheets (as modifier) through wet phase inversion method. Based on the amounts of GO (0, 0.5, 1, and 2 wt%), the synthesized membranes named as M1, M2, M3, and M4, respectively. The membranes characteristics were evaluated using FE-SEM, FT-IR, and water contact angle measurements. In addition, the performance of the prepared membranes was investigated in terms of basic parameters: filtrate water flux, nitrate removal efficiency, and antifouling properties. Results showed significant improvements of the characteristics of modified... 

    Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles

    , Article Journal of Cleaner Production ; Volume 183 , 2018 , Pages 1197-1206 ; 09596526 (ISSN) Hosseini, A ; Vossoughi, M ; Mahmoodi, N. M ; Sadrzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, novel chitosan/poly(vinyl alcohol) (PVA)/SiO2 nanocomposite ENMs were prepared to improve the mechanical strength and permeation properties of ENMs. The effect of various concentrations of SiO2 in the spinning solution (0, 0.5, 1.0 and 2.0 wt %) on the morphology, fiber diameter, porosity, thermomechanical properties, and permeability of the synthesized membranes was investigated. The prepared affinity membranes were utilized for the removal of dye from colored wastewater. Incorporating SiO2, as a reinforcing agent, was found to increase the compaction resistance of the nanocomposite ENMs. With the addition of 0.5 wt % of SiO2, the Young's modulus of the prepared membranes... 

    Modeling magneto-mechanical behavior of Fe3O4 nanoparticle/polyamide nanocomposite membrane in an external magnetic field

    , Article Journal of Composite Materials ; Volume 52, Issue 11 , 2018 , Pages 1505-1517 ; 00219983 (ISSN) Tayefeh, A ; Wiesner, M ; Mousavi, A ; Poursalehi, R ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    The magnetic response of a polyamide nanocomposite membrane under applying a magnetic field has been modeled to evaluate elastic deformation order of magnitude. A PA-Fe3O4 nanocomposite membrane is considered to be modeled under influence of volume plane stress caused by a magnetic field. The modeling of the mechanical behavior of Fe3O4-PA nanocomposite membrane suggests that nanoparticle displacements within the nanocomposite, in the order of 200 nm under applying an external magnetic field, are greater than free volumes or porosities of the polyamide membrane. The membrane can be excited to mechanically vibrate by applying an alternating magnetic field lower than 0.1 T. As the results... 

    Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions

    , Article Chemical Engineering Communications ; Volume 206, Issue 4 , 2019 , Pages 495-508 ; 00986445 (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Maleki, A ; Alimohammadi, M ; Jafari, A ; Hemmati Borji, S ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this study, four types of mixed matrix membranes were fabricated using polysulfone (as the base polymer) and different contents of graphene oxide (GO) nanosheets (as modifier) through wet phase inversion method. Based on the amounts of GO (0, 0.5, 1, and 2 wt%), the synthesized membranes named as M1, M2, M3, and M4, respectively. The membranes characteristics were evaluated using FE-SEM, FT-IR, and water contact angle measurements. In addition, the performance of the prepared membranes was investigated in terms of basic parameters: filtrate water flux, nitrate removal efficiency, and antifouling properties. Results showed significant improvements of the characteristics of modified... 

    Novel nanocomposite polyethersulfone- antimony tin oxide membrane with enhanced thermal, electrical and antifouling properties

    , Article Polymer ; Volume 163 , 2019 , Pages 48-56 ; 00323861 (ISSN) Khorshidi, B ; Hosseini, S. A ; Ma, G ; McGregor, M ; Sadrzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Application of organic−inorganic nanocomposite membranes for water treatment is exceptionally growing owing to their tunable functionalities in addition to their enhanced permeation and antifouling propensity. In the present work, novel nanocomposite polyethersulfone (PES) membrane was synthesized using antimony-doped tin oxide (ATO) nanoparticles (NPs) via phase separation technique. It was found that the modified PES-ATO nanocomposite membranes exhibited significantly higher fouling resistance and larger permeate flux recovery ratio when tested with oil sands produced water than unmodified PES membranes. Furthermore, the PES-ATO membranes provided 40% more organic matter removal compared... 

    New blend nanocomposite membranes based on PBI/sulfonated poly(ether keto imide sulfone) and functionalized quantum dot with improved fuel cell performance at high temperatures

    , Article International Journal of Energy Research ; Volume 45, Issue 15 , August , 2021 , Pages 21274-21292 ; 0363907X (ISSN) Hooshyari, K ; Rezania, H ; Vatanpour, V ; Rastgoo Deylami, M ; Rajabi, H. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In this work, we reported the synthesis of a sulfonated poly(ether keto imide sulfone) (SPEKIS) using a novel aromatic diol containing nitrogen heterocycles and sulfonic monomer. New nanocomposite blend membranes were prepared using obtained SPEKIS and polybenzimidazole (PBI) with the incorporation of zinc sulfide (ZnS) functionalized quantum dots (FQDs) having both -COOH and NH2 groups with a solution-casting method and were used as proton exchange membranes. The SPEKIS and ZnS FQDs were used for the first time in the preparation of new nanocomposite blend membranes based on PBI. The purpose of this study is to investigate the effect of SPEKIS and ZnS FQDs on the PBI membrane performance in... 

    Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification

    , Article Chemosphere ; Volume 290 , 2022 ; 00456535 (ISSN) Vatanpour, V ; Jouyandeh, M ; Akhi, H ; Mousavi Khadem, S. S ; Ganjali, M. R ; Moradi, H ; Mirsadeghi, S ; Badiei, A ; Esmaeili, A ; Rabiee, N ; Habibzadeh, S ; Koyuncu, I ; Nouranian, S ; Formela, K ; Saeb, M. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Hyperbranched polyethyleneimine functionalized silica (PEI-SiO2) nanoparticles with considerable hydrophilicity were synthesized and incorporated into a polysulfone (PSF)/dimethylacetamide (DMA)/polyvinylpyrrolidone (PVP) membrane casting solution in five different ratios to fabricate PEI-SiO2/PSF nanocomposite membranes using nonsolvent-induced phase separation. The hydrophilic PEI-SiO2 nanoparticles were characterized by TEM, FTIR, TGA, and XPS analyses. Morphology, water contact angles, mean pore sizes, overall porosity, tensile strengths, water flux, antifouling and the dye separation performances of the PEI-SiO2/PSF membranes were also studied. The PEI-SiO2 nanoparticles were uniformly... 

    Thin-film nanocomposite membranes containing aspartic acid-modified MIL-53-NH2 (Al) for boosting desalination and anti-fouling performance

    , Article Desalination ; Volume 521 , 2022 ; 00119164 (ISSN) Bayrami, A ; Bagherzadeh, M ; Navi, H ; Chegeni, M ; Hosseinifard, M ; Amini, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In the current study, the prospect improvements on desalination and anti-fouling performance of polyamide (PA)-based TFN membranes modified with MIL-53-NH-Asp have been investigated. MIL-53-NH2 nanoparticles (NPs) have been treated through a single-step post-synthesis modification reaction to enhance the hydrophilicity feature and compatibility with the PA layer. Various concentrations of synthesized NPs were dispersed in an aqueous phase consisting m-phenylenediamine and 2,6-diaminopyridine monomers for incorporation in the PA rejection layer. Analysis data of fabricated membranes provide evidence of changes in their physico-chemical properties after NPs incorporation. In comparison with...