Loading...
Search for: nanoparticle-diameter
0.012 seconds

    The effect of hematocrit and nanoparticles diameter on hemodynamic parameters and drug delivery in abdominal aortic aneurysm with consideration of blood pulsatile flow

    , Article Computer Methods and Programs in Biomedicine ; Volume 195 , October , 2020 Jafarzadeh, S ; Nasiri Sadr, A ; Kaffash, E ; Goudarzi, S ; Golab, E ; Karimipour, A ; Sharif University of Technology
    Elsevier Ireland Ltd  2020
    Abstract
    Background and Objective: The present article has simulated to investigate the efficient hemodynamic parameters, the drug persistence, and drug distribution on an abdominal aortic aneurysm. Methods: Blood as a non-Newtonian fluid enters the artery acting as a real pulse waveform; its behavior is dependent on hematocrit and strain rate. In this simulation of computational fluid dynamic, magnetic nanoparticles of iron oxide which were in advance coated with the drug, are injected into the artery during a cardiac cycle. A two-phase model was applied to investigate the distribution of these carriers. Results: The results are presented for different hematocrits and the nanoparticle diameter. It... 

    Analysis of nanoparticles migration on natural convective heat transfer of nanofluids

    , Article International Journal of Thermal Sciences ; Volume 68 , June , 2013 , Pages 79-93 ; 12900729 (ISSN) Pakravan, H. A ; Yaghoubi, M ; Sharif University of Technology
    2013
    Abstract
    Both experimental and numerical studies are unanimous for enhancing Nusselt number for forced convection of nanofluids with slight difference, but there is inconsistency for natural convection heat transfer of nanofluids. In this paper attempt is made to study the effects of nanoparticles migration on the natural convection behavior of nanofluids. For analysis, a mixture model is used by including important phenomena such as Brownian motion and thermophoresis effects. These two mechanisms are taken into account to compute the slip velocities between the base fluid and nanoparticles. The governing equations are solved numerically and good agreements are observed in comparison with... 

    Natural convection of Al2O3-water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon

    , Article International Journal of Thermal Sciences ; Volume 105 , 2016 , Pages 137-158 ; 12900729 (ISSN) Esfandiary, M ; Mehmandoust, B ; Karimipour, A ; Pakravan, H. A ; Sharif University of Technology
    Elsevier Masson SAS 
    Abstract
    Effects of inclination angle on natural convective heat transfer and fluid flow in an enclosure filled with Al2O3-water nanofluid are studied numerically. The left and right walls of enclosure are kept in hot and cold constant temperature while the other two walls are assumed to be adiabatic. Considering Brownian motion and thermophoresis effect (two important slip velocity mechanisms) the two-phase mixture model has been employed to investigate the flow and thermal behaviors of the nanofluid. The study was performed for various inclination angles of enclosure ranging from γ = 0° to γ = 60°, volume fraction from 0% to 3%, and Rayleigh numbers varying from 105 to 107. The governing equations...