Loading...
Search for: navier-stokes-equations
0.009 seconds
Total 222 records

    A high-order compact finite-difference lattice Boltzmann method for simulation of steady and unsteady incompressible flows

    , Article International Journal for Numerical Methods in Fluids ; Vol. 75, Issue. 10 , 2014 , Pages 713-746 ; ISSN: 02712091 Hejranfar, K ; Ezzatneshan, E ; Sharif University of Technology
    Abstract
    A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is proposed and applied to accurately compute steady and unsteady incompressible flows. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized by using the fourth-order compact FD scheme, and the temporal term is discretized with the fourth-order Runge-Kutta scheme to provide an accurate and efficient incompressible flow solver. A high-order spectral-type low-pass compact filter is used to stabilize the numerical solution. An iterative initialization procedure is presented and applied to generate consistent initial conditions for the simulation of unsteady flows. A sensitivity study is also... 

    Extending a hybrid finite-volume-element method to solve laminar diffusive flame

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Vol. 66, issue. 2 , August , 2014 , pp. 181-210 ; ISSN: 10407790 Darbandi, M ; Ghafourizadeh, M ; Sharif University of Technology
    Abstract
    We extend a hybrid finite-volume-element (FVE) method to treat the laminar reacting flow in cylindrical coordinates considering the collocation of all chosen primitive variables. To approximate the advection fluxes at the cell faces, we use the upwind-biased physical influence scheme PIS and derive a few new extended expressions applicable in the cylindrical frame. These expressions are derived for both the Navier-Stokes and reactive flow governing equations, of which the latter expressions are considered novel in the finite-volume formulation. To validate our derived expressions, the current results are compared with the experimental data and other available numerical solutions. The results... 

    Solving combined natural convection-radiation in participating media considering the compressibility effects

    , Article 52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014 ; 13- 17 January , 2014 ; ISBN: 9781624102561 Darbandi, M ; Abrar, B ; Schneider, G. E ; Sharif University of Technology
    Abstract
    In this work, we aim to study the effect of temperature gradients on the combined natural convection-radiation heat transfer problem in participating media. To impose this combined effect, we first solve the radiative transfer equation in an absorbing and emitting media. Then, we suitably add the radiation source terms to the energy equation and solve the fluid flow equations. Literature shows that many incompressible algorithms use the Boussinesq assumption to model the thermobuoyant force; however, the validity of this assumption is limited to cases with low temperature gradient distributions. Evidently, Boussinesq assumption would result in considerable errors in high temperature gradient... 

    Multi-point optimization of lean and sweep angles for stator and rotor blades of an axial turbine

    , Article Proceedings of the ASME Turbo Expo ; Vol. 2C, issue , 2014 Asgarshamsi, A ; Hajilouy-Benisi, A ; Assempour, A ; Pourfarzaneh, H
    Abstract
    In this research, numerical optimization of the rear part of a gas turbine, consisting of a single stage axial turbine is carried out. Automated aerodynamic shape optimization is performed by coupling a CFD flow simulation code with the Genetic Algorithm. An effective multi-point optimization method to improve efficiency and/or pressure ratio of the axial turbine is performed. Some variations of optimization parameters such as lean and sweep angels of stator and rotor blades are accomplished. Furthermore, during the optimization process, three-dimensional and turbulent flow field is numerically investigated using a compressible Navier-Stokes solver. The gas turbine experimental... 

    Computational fluid-dynamics-based analysis of a ball valve performance in the presence of cavitation

    , Article Journal of Engineering Thermophysics ; Vol. 23, issue. 1 , January , 2014 , p. 27-38 Tabrizi, A. S ; Asadi, M ; Xie, G ; Lorenzini, G ; Biserni, C ; Sharif University of Technology
    Abstract
    In this paper, the ball valve performance is numerically simulated using an unstructured CFD (Computational Fluid Dynamics) code based on the finite volume method. Navier-Stokes equations in addition to a transport equation for the vapor volume fraction were coupled in the RANS solver. Separation is modeled very well with a modification of turbulent viscosity. The results of CFD calculations of flow through a ball valve, based on the concept of experimental data, are described and analyzed. Comparison of the flow pattern at several opening angles is investigated. Pressure drop behind the ball valve and formation of the vortex flow downstream the valve section are also discussed. As the... 

    Multidimensional modeling of the stenosed carotid artery: A novel CAD approach accompanied by an extensive lumped model

    , Article Acta Mechanica Sinica/Lixue Xuebao ; Vol. 30, issue. 2 , 2014 , p. 259-273 Kashefi, A ; Mahdinia, M ; Firoozabadi, B ; Amirkhosravi, M ; Ahmadi, G ; Saidi, M. S ; Sharif University of Technology
    Abstract
    This study describes a multidimensional 3D/lumped parameter (LP) model which contains appropriate inflow/outflow boundary conditions in order to model the entire human arterial trees. A new extensive LP model of the entire arterial network (48 arteries) was developed including the effect of vessel diameter tapering and the parameterization of resistance, conductor and inductor variables. A computer aided-design (CAD) algorithm was proposed to efficiently handle the coupling of two or more 3D models with the LP model, and substantially lessen the coupling processing time. Realistic boundary conditions and Navier-Stokes equations in healthy and stenosed models of carotid artery bifurcation... 

    MHD flow in a channel using new combination of order of magnitude technique and HPM [MHD tok u kanalu uporabom novih kombinacija tehnika grubog opisa vrijednosti i HPM]

    , Article Tehnicki Vjesnik ; Volume 21, Issue 2 , April , 2014 , Pages 317-321 ; ISSN: 13303651 Abbasi, M ; Ganji, D. D ; Rahni, M. T ; Sharif University of Technology
    Abstract
    The present work is concerned with the steady incompressible flow through a parallel plate channel with stretching walls under an externally applied magnetic field. The governing continuity and Navier-Stokes equations are reduced to a fourth order nonlinear differential equation by using vorticity definition and similarity solution transformation. The obtained equations are solved by applying the analytical homotopy perturbation method (HPM). The method is called order of magnitude suggested for simplifying series solution to finite expression that is useful in engineering problems. The results are verified by comparing with numerical solutions and demonstrate a good accuracy of the obtained... 

    Laminar falling film flow of aqueous Li Br solution on a horizontal elliptical tube

    , Article International Journal of Fluid Mechanics Research ; Volume 40, Issue 4 , 2013 , Pages 324-343 ; 10642277 (ISSN) Abyaneh, M. H. J ; Saidi, M. H ; Sharif University of Technology
    2013
    Abstract
    Flow hydrodynamics of laminar falling film of aqueous Li Br solution (Li Br - H2O) on a horizontal elliptical tube has been investigated in this research. The film velocity distribution and film thickness, namely, the flow characteristics are determined by solving analytically simultaneous simplified Navier - Stokes equations and continuity equation in polar and Cartesian coordinates. The analysis is based on steady state laminar flow of falling liquid film of Li Br - H2O on a horizontal elliptical tube in polar model and Cartesian model (CM), for cases in which traction on the film surface is considered negligible. Models are compared with each other in three cases of aspect ratios (Ar),... 

    Numerical investigation of the effect of sprue base design on the flow pattern of aluminum gravity casting

    , Article Defect and Diffusion Forum ; Volume 344 , October , 2013 , Pages 43-53 ; 10120386 (ISSN) ; 9783037859049 (ISBN) Baghani, A ; Bahmani, A ; Davami, P ; Varahram, N ; Shabani, M. O ; Fisher D. J ; Sharif University of Technology
    2013
    Abstract
    Effects of sprue base size and design on flow pattern during aluminum gravity casting have been investigated by employing different sprue base sizes and using computational fluid dynamics (CFD). Calculations was carried out using SUTCAST simulation software based on solving Navier-Stokes equation and tracing the free surface using SOLA-VOF algorithm. Flow pattern was analyzed with focusing on streamlines and velocity distribution in sprue base, runner and in-gate. Increasing well size was produced a vortex flow at the bottom of sprue base which increased the surface velocity of liquid metal in runner. Using a rather big sprue well could eliminate vena contracta, but in-gate velocity was... 

    Effect of liquid viscosity on instability of high-spinning partially-filled shell rotors

    , Article International Journal of Structural Stability and Dynamics ; Volume 13, Issue 6 , 2013 ; 02194554 (ISSN) Firouz Abadi, R. D ; Permoon, M. R ; Sharif University of Technology
    2013
    Abstract
    In this study, the instability of spinning cylindrical shells partially filled with viscous liquid is investigated. Based on the Navier-Stokes equations for the incompressible flow, a 2D model is developed for liquid motion at each section of the cylinder. The governing equations of the cylinder vibrations are obtained based on the first-order shear deformable shell theory. The nonpenetration and no-slip boundary conditions of the flow on the wetted surface of the cylinder relate the liquid motion to the shell vibrations. Also the liquid pressure exerted on the cylinder wall combines the vibrations of the rotary cylinder to the liquid motion. By using the obtained coupled liquid-structure... 

    Computation of the stresses in a moving reference system in a half-space due to a traversing time-varying concentrated load

    , Article Computers and Mathematics with Applications ; Volume 65, Issue 11 , 2013 , Pages 1849-1862 ; 08981221 (ISSN) Dehestani, M ; Vafai, A ; Mofid, M ; Szidarovszky, F ; Sharif University of Technology
    2013
    Abstract
    An analytical approach is employed to investigate the transient and steady-state stresses in an isotropic, homogeneous half-space subjected to moving concentrated loads with subsonic speeds. Applying the Stokes-Helmholtz resolution to the Navier's equation of motion for the half-space results in a system of wavetype partial differential equations. Based on the new moving coordinate system, a modified system of partial differential equations is obtained. Applying a concurrent two-sided and one-sided Laplace transformation, this system is modified to a system of ordinary differential equations, the solutions of which are obtained with respect to boundary conditions. The transformed transient... 

    A coupled wellbore-reservoir flowmodel for numerical pressure transient analysis in vertically heterogeneous reservoirs

    , Article Journal of Porous Media ; Volume 16, Issue 5 , 2013 , Pages 395-400 ; 1091028X (ISSN) Khadivi, K ; Soltanieh, M ; Farhadpour, F. A ; Sharif University of Technology
    2013
    Abstract
    Pressure transient analysis in vertically heterogeneous reservoirs is examined. The inclusion of a separate model for the free fluid flow in the wellbore is essential to allow for hydraulic communication and mixing of the fluid issuing from different reservoir layers. A two-dimensional model coupling Darcy flow in the reservoir with Navier-Stokes flow in the wellbore is developed and solved by the finite element technique. The coupled wellbore-reservoir flow model is used to analyze a layered reservoir with an abrupt change in permeability and a thick formation showing a gradual change in permeability with depth. Contrary to conventional reservoir models, this new model is able to capture... 

    Investigation of free surface flow generated by a planing flat plate using smoothed particle hydrodynamics method and FLOW3D simulations

    , Article Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment ; Volume 227, Issue 2 , 2013 , Pages 125-135 ; 14750902 (ISSN) Ghadimi, P ; Dashtimanesh, A ; Farsi, M ; Najafi, S ; Sharif University of Technology
    2013
    Abstract
    In this article, smoothed particle hydrodynamics method is applied in order to study the free surface flow generated by two-dimensional planing flat plate. For this purpose, a two-dimensional smoothed particle hydrodynamics code is developed and validated by the well-known dam breaking problem. Four trim angles and three different velocities are considered to perform a parametric study to examine their physical effects. The obtained results from smoothed particle hydrodynamics are compared against the corresponding Reynolds-averaged Navier Stokes solutions. It is observed that at lower velocities, there exists a good agreement between the smoothed particle hydrodynamics and Reynolds-averaged... 

    Centrifugal compressor shape modification using a proposed inverse design method

    , Article Journal of Mechanical Science and Technology ; Volume 27, Issue 3 , 2013 , Pages 713-720 ; 1738494X (ISSN) Nili Ahmadabadi, M ; Poursadegh, F ; Sharif University of Technology
    2013
    Abstract
    This paper is concerned with a quasi-3D design method for the radial and axial diffusers of a centrifugal compressor on the meridional plane. The method integrates a novel inverse design algorithm, called ball-spine algorithm (BSA), and a quasi-3D analysis code. The Euler equation is solved on the meridional plane for a numerical domain, of which unknown boundaries (hub and shroud) are iteratively modified under the BSA until a prescribed pressure distribution is reached. In BSA, unknown walls are composed of a set of virtual balls that move freely along specified directions called spines. The difference between target and current pressure distributions causes the flexible boundary to deform... 

    Numerical simulation and parametric study of a supersonic intake

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 227, Issue 3 , January , 2013 , Pages 467-479 ; 09544100 (ISSN) Soltani, M. R ; Younsi, J. S ; Farahani, M ; Masoud, A ; Sharif University of Technology
    2013
    Abstract
    A computational fluid dynamics code was developed to compute the flow inside and around a supersonic external compression axisymmetric intake. The code solves the Reynolds-averaged Navier-Stokes equations using an explicit finite volume method in a structured grid and uses the Baldwin-Lomax algebraic model to compute the turbulent viscosity coefficient. Experiments were performed to validate the predicted results and good agreements are achieved. In the next part of the research, a parametric study was undertaken using the designed base case at a constant Mach number of 2 and at 0° angle of attack. The effects of various important parameters such as free stream Mach number, spike deflection... 

    Experiments and numerical modeling of baffle configuration effects on the performance of sedimentation tanks

    , Article Canadian Journal of Civil Engineering ; Volume 40, Issue 2 , 2013 , Pages 140-150 ; 03151468 (ISSN) Razmi, A. M ; Bakhtyar, R ; Firoozabadi, B ; Barry, D. A ; Sharif University of Technology
    2013
    Abstract
    The hydraulic efficiency of sedimentation basins is reduced by short-circuiting, circulation zones and bottom particleladen jets. Baffles are used to improve the sediment tank performance. In this study, laboratory experiments were used to examine the hydrodynamics of several baffle configurations. An accompanying numerical analysis was performed based on the 2-D Reynolds-averaged Navier-Stokes equations along with the k-ε turbulence closure model. The numerical model was supplemented with the volume-of-fluid technique, and the advection-diffusion equation to simulate the dynamics of particle-laden flow. Model predictions compared well with the experimental data. An empirical function was... 

    Experimental and numerical investigation of radial flow compressor volute shape effects in characteristics and circumferential pressure non-uniformity

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1753-1764 ; 10263098 (ISSN) Mojaddam, M ; Hajilouy Benisi, A ; Movahhedy, M. R ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    In this article, the effects of volute cross section shape and centroid profile of a radial ow compressor volute were investigated. The performance characteristics of a turbocharger compressor were obtained experimentally by measuring rotor speed and ow parameters at the inlet and outlet of the compressor. The three-dimensional ow field model of the compressor was obtained numerically solving Navier-Stokes equations with SST turbulence model. The compressor characteristic curves were plotted. For model verification, the results were compared with experimental data, showing good agreement. Modification of a volute was performed by introducing a shape factor for volute cross section geometry.... 

    Applying a hybrid DSMC/Navier-Stokes frame to explore the effect of splitter catalyst plates in micro/nanopropulsion systems

    , Article Sensors and Actuators, A: Physical ; Volume 189 , January , 2013 , Pages 409-419 ; 09244247 (ISSN) Darbandi, M ; Roohi, E ; Sharif University of Technology
    2013
    Abstract
    In this study, we apply a hybrid direct simulation Monte Carlo (DSMC)/Navier-Stokes (NS) frame to simulate the effects of catalyst or splitter plates in propulsive efficiency of micro/nanopropulsion systems. Our hybrid frame uses the local Knudsen number based on the gradient of the flow properties (KnGLL) to distinct the continuum and molecular regions. This frame also uses the state-based coupling (Dirichlet-Dirichlet boundary-condition coupling) to transfer the information between the two regions. We simulate typical micro/nanopropulsion systems consisting of channels, catalyst or splitter plates, and convergent-divergent nozzles. According to the Kn GLL, we apply the NS solver to the... 

    Investigation on effect of centrifugal compressor volute cross-section shape on performance and flow field

    , Article Proceedings of the ASME Turbo Expo ; Volume 8, Issue PARTS A, B, AND C , 2012 , Pages 871-880 ; 9780791844748 (ISBN) Mojaddam, M ; Benisi, A. H ; Movahhedy, M. R ; Sharif University of Technology
    2012
    Abstract
    In this article, the effects of volute cross section shape and centroid profile of a centrifugal compressor volute were investigated. The performance characteristics of a turbocharger compressor were obtained experimentally by measuring rotor speed and flow parameters at the inlet and outlet of the centrifugal compressor. The three dimensional flow field model of the compressor was obtained numerically solving Navier- Stokes equations with SST turbulence model. The compressor characteristic curves were plotted. For model verification, the results were compared with experimental data, showing good agreement. Modification of a volute was performed by introducing a shape factor for volute cross... 

    Developing a FVBFE method on moving unstructured hybrid grid to simulate ice accretion

    , Article 43rd AIAA Thermophysics Conference 2012 ; 2012 ; 9781624101861 (ISBN) Darbandi, M ; Fard, M ; Naderi, A ; Schneider, G. E ; American Institute of Aeronautics and Astronautics (AIAA) ; Sharif University of Technology
    2012
    Abstract
    In this study, a moving mesh finite-volume-based finite-element (FVBFE) method is suitably extended to simulate the effect of supercooled liquid water droplet content on ice formation and growth on wing sections. The method benefits from the advantages of both finite-volume and finiteelement methods, which promote achieving a more accurate solution and a higher efficient procedure in ice accretion calculations. The method solves the time-dependent Navier-Stokes (NS) equations on unstructured hybrid grid distributions. In this method, the convection terms are approximated at the cell faces using a physical influence upwinding scheme. We also use linear spring approach to move the hybrid mesh....