Loading...
Search for: newtonian-liquids
0.008 seconds
Total 61 records

    An investigation on the body force modeling in a lattice Boltzmann BGK simulation of generalized Newtonian fluids

    , Article Physica A: Statistical Mechanics and its Applications ; Vol. 415, issue , 2014 , pp. 315-332 Farnoush, S ; Manzari, M. T ; Sharif University of Technology
    Abstract
    Body force modeling is studied in the Generalized Newtonian (GN) fluid flow simulation using a single relaxation time lattice Boltzmann (LB) method. First, in a shear thickening Poiseuille flow, the necessity for studying body force modeling in the LB method is explained. Then, a parametric unified framework is constructed for the first time which is composed of a parametric LB model and its associated macroscopic dual equations in both steady state and transient simulations. This unified framework is used to compare the macroscopic behavior of different forcing models. Besides, using this unified framework, a new forcing model for steady state simulations is devised. Finally, by solving a... 

    Electrokinetic mixing and displacement of charged droplets in hydrogels

    , Article Transport in Porous Media ; Vol. 104, Issue. 3 , Jun , 2014 , pp. 469-499 ; ISSN: 01693913 Mohammadi, A ; Sharif University of Technology
    Abstract
    Mixing in droplets is an essential task in a variety of microfluidic systems. Inspired by electrokinetic mixing, electric field-induced hydrodynamic flow inside a charged droplet embedded in an unbounded polyelectrolyte hydrogel is investigated theoretically. In this study, the polyelectrolyte hydrogel is modeled as a soft, and electrically charged porous solid saturated with a salted Newtonian fluid, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which is located at the plane of shear, with the electrostatic potential ζ. The fluid inside the droplet attains a finite velocity owing to hydrodynamic coupling with the... 

    Pressure effects on electroosmotic flow of power-law fluids in rectangular microchannels

    , Article Theoretical and Computational Fluid Dynamics ; Vol. 28, issue. 4 , 2014 , pp. 409-426 ; ISSN: 09354964 Vakili, M. A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    In this paper, the fully developed electroosmotic flow of power-law fluids in rectangular microchannels in the presence of pressure gradient is analyzed. The electrical potential and momentum equations are numerically solved through a finite difference procedure for a non-uniform grid. A complete parametric study reveals that the pressure effects are more pronounced at higher values of the channel aspect ratio and smaller values of the flow behavior index. The Poiseuille number is found to be an increasing function of the channel aspect ratio for pressure assisted flow and a decreasing function of this parameter for pressure opposed flow. It is also observed that the Poiseuille number is... 

    Dynamics of magnetic nano-flake vortices in Newtonian fluids

    , Article Journal of Magnetism and Magnetic Materials ; Volume 419 , 2016 , Pages 547-552 ; 03048853 (ISSN) Bazazzadeh, N ; Mohseni, S. M ; Khavasi, A ; Zibaii, M. I ; Movahed, S. M. S ; Jafari, G. R ; Sharif University of Technology
    Elsevier 
    Abstract
    We study the rotational motion of nano-flake ferromagnetic disks suspended in a Newtonian fluid, as a potential material owing the vortex-like magnetic configuration. Using analytical expressions for hydrodynamic, magnetic and Brownian torques, the stochastic angular momentum equation is determined in the dilute limit conditions under applied magnetic field. Results are compared against experimental ones and excellent agreement is observed. We also estimate the uncertainty in the orientation of the disks due to the Brownian torque when an external magnetic field aligns them. Interestingly, this uncertainty is roughly proportional to the ratio of thermal energy of fluid to the magnetic energy... 

    Mass transport analysis of non-Newtonian fluids under combined electroosmotically and pressure driven flow in rectangular microreactors

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 508 , 2016 , Pages 345-359 ; 09277757 (ISSN) Yousefian, Z ; Saidi, M. H ; Sharif University of Technology
    Elsevier 
    Abstract
    Hydrodynamically fully developed flow of power-law fluids under combined action of electroosmotic and pressure gradient forces in rectangular microreactors is analyzed considering heterogeneous catalytic reactions. The Poisson-Boltzmann, Cauchy momentum, and concentration equations are considered in two dimensions and after being dimensionless are numerically solved applying a finite difference algorithm. Variation of axial concentration gradient, and axial and horizontal mass diffusions are taken into account as well. To accomplish a more general analysis, the velocity distribution is obtained by solving continuity and Cauchy momentum equations and is not considered as an average axial... 

    Analysis of non-newtonian fluids in microchannels with different wall materials

    , Article ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels ; 2009 , Pages 697-703 ; 9780791843499 (ISBN) Darbandi, M ; Behshad Shafii, M ; Safari Mohsenabad, S ; Sharif University of Technology
    Abstract
    The behavior of non-Newtonian fluids is considered as an important subject in micro scale and microfluidic flow researches. Because of the complexity and cost in the numerical works and the experimental set-ups in some instances, the analytical approach can be taken into account as a robust alternative tool to solve the non-Newtonian microfluidic flows in some special cases benefiting from a few simplified assumptions. In this work, we analyze the flow of two non-Newtonian fluids including the power-law and grade-fluid models in microchannels. For the grade-fluid, the stress tensors are defined considering the Rivlin-Ericksen tensor definitions. To avoid the complexities in the entrance... 

    Non-linear stress response of non-gap-spanning magnetic chains suspended in a newtonian fluid under oscillatory shear test: a direct numerical simulation

    , Article Physics of Fluids ; Volume 29, Issue 10 , 2017 ; 10706631 (ISSN) Hashemi, M. R ; Taghizadeh Manzari, M ; Fatehi, R ; Sharif University of Technology
    Abstract
    Adirect numerical simulation approach is used to investigate the effective non-linear viscoelastic stress response of non-gap-spanning magnetic chains suspended in a Newtonian fluid. The suspension is confined in a channel and the suspended clusters are formed under the influence of a constant external magnetic field. Large amplitude oscillatory shear (LAOS) tests are conducted to study the non-linear rheology of the system. The effect of inertia on the intensity of non-linearities is discussed for both magnetic and non-magnetic cases. By conducting magnetic sweep tests, the intensity and quality of the non-linear stress response are studied as a function of the strength of the external... 

    Drop formation from a capillary tube: comparison of different bulk fluid on newtonian drops and formation of newtonian and non-newtonian drops in air using image processing

    , Article International Journal of Heat and Mass Transfer ; Volume 124 , 2018 , Pages 912-919 ; 00179310 (ISSN) Nazari, A ; Zadkazemi Derakhshi, A ; Nazari, A ; Firoozabadi, B ; Sharif University of Technology
    Abstract
    The formation of water drops as a Newtonian fluid and formation of a shear-thinning non-Newtonian fluid, Carboxyl Methyl Cellulose (CMC) from a capillary into different bulk fluids are experimentally investigated. A high speed camera is used to visualize the images of the drops and an image-processing code employed to determine the drop properties from each image. It was found that the properties of the water drops when they are drooped into the liquids bulk fluids such as toluene and n-hexane are almost the same while they differed substantially when they were drooped into the air bulk fluid. It is shown that during the formation of water drop in all three kinds of bulk fluids, the drop... 

    Experimental Investigation on the Accelerated Motion of Newtonian and Non-Newtonian Liquid Drops

    , M.Sc. Thesis Sharif University of Technology Aminzadeh, Milad (Author) ; Firoozabadi, Bahar (Supervisor) ; Afshin, Hossein (Supervisor)
    Abstract
    Motion of liquid drops into another fluid is of central importance in a variety of most commonly used industries. Vast applications of emulsions in food and drug industries as well as using of drops in liquid-liquid extraction processes and direct contact heat exchangers are examples in which dynamics of motion of drops play a significant role in operation and efficiency.
    In present study, we consider the accelerated motion of Newtonian and non-Newtonian liquid drops experimentally. In order to find the effect of bulk fluid on the motion of drops, air and water are used as bulk fluid. The experiments have been done on Water, Ethanol, Ethyl acetate, n-Hexane and Toluene as Newtonian and... 

    Experimental Study of Droplet Formation in Surfactant Solution

    , M.Sc. Thesis Sharif University of Technology Niknezhad, Mahdi (Author) ; Firoozabadi, Bahar (Supervisor) ; Afshin, Hossein (Co-Advisor)
    Abstract
    Surfactants are materials that reduces surface tension, and this property has provided a wide range of applications for them. Most of the surfactants reduce surface tensions at the interface of two fluids. The pharmaceutical and food industries, detergents, cosmetics, agricultural pesticides, dye production and oil extraction are among these applications.In this study, the formation of droplets in the presence of three types of surfactants SDS, CTAB and Tween 20 has been investigated. To evaluate the droplet behavior in the presence of specific surfactants, various parameters such as formation time of the droplet, the diameter and length of the droplet formed, the diameter and length of the... 

    The Study of the Effect of Surfactant on the Liquid Drop Motion In Fluid

    , M.Sc. Thesis Sharif University of Technology Kazempour, Ali (Author) ; Firoozabadi, Bahar (Supervisor) ; Afshin, Hossein (Co-Supervisor)
    Abstract
    The drop motion in fluid and the mass transfer is one of the most interesting and favorite topics that has attracted the attention of many researchers. Knowing the functions of the factors affecting the deformation and the process of mass transfer and the effects of the addition of the surfactant, improve the efficiency of the related industrial processes.In this regard, the present study examines how the shape and speed of a moving Newtonian drop in a Newtonian fluid, the mass transfer of soluble material from inside the drop to the surrounding fluid and also the study of the effect of surfactant on the dynamics of moving droplet is studied numerically. During the drop movement, the... 

    Saffman-Taylor instability in yield stress fluids

    , Article Journal of Physics Condensed Matter ; Volume 17, Issue 14 , 2005 , Pages S1209-S1218 ; 09538984 (ISSN) Maleki Jirsaraei, N ; Lindner, A ; Rouhani, S ; Bonn, D ; Sharif University of Technology
    Institute of Physics Publishing  2005
    Abstract
    Pushing a fluid with a less viscous one gives rise to the well known Saffman-Taylor instability. This instability is important in a wide variety of applications involving strongly non-Newtonian fluids that often exhibit a yield stress. Here we investigate the Saffmann-Taylor instability in this type of fluid, in longitudinal flows in Hele-Shaw cells. In particular, we study Darcy's law for yield stress fluids. The dispersion equation for the flow is similar to the equations obtained for ordinary viscous fluids but the viscous terms in the dimensionless numbers conditioning the instability now contain the yield stress. This also has repercussions on the wavelength of the instability as it... 

    An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows

    , Article International Journal of Non-Linear Mechanics ; Volume 42, Issue 10 , 2007 , Pages 1210-1223 ; 00207462 (ISSN) Rafiee, A ; Manzari, M. T ; Hosseini, M ; Sharif University of Technology
    2007
    Abstract
    In this paper, an incompressible smoothed particle hydrodynamics (SPH) method is presented to solve unsteady free-surface flows. Both Newtonian and viscoelastic fluids are considered. In the case of viscoelastic fluids, both the Maxwell and Oldroyd-B models are investigated. The proposed SPH method uses a Poisson pressure equation to satisfy the incompressibility constraints. The solution algorithm is an explicit predictor-corrector scheme and employs an adaptive smoothing length based on density variations. To alleviate the numerical difficulties encountered when fluid is highly stretched, an artificial stress term is incorporated into the momentum equation which reduces the risk of... 

    Numerical investigation of blood flow. Part I: In microvessel bifurcations

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 13, Issue 8 , 2008 , Pages 1615-1626 ; 10075704 (ISSN) Jafari, A ; Mousavi, S. M ; Kolari, P ; Sharif University of Technology
    2008
    Abstract
    In some diseases there is a focal pattern of velocity in regions of bifurcation, and thus the dynamics of bifurcation has been investigated in this work. A computational model of blood flow through branching geometries has been used to investigate the influence of bifurcation on blood flow distribution. The flow analysis applies the time-dependent, three-dimensional, incompressible Navier-Stokes equations for Newtonian fluids. The governing equations of mass and momentum conservation were solved to calculate the pressure and velocity fields. Movement of blood flow from an arteriole to a venule via a capillary has been simulated using the volume of fluid (VOF) method. The proposed simulation... 

    Modelling of power-law fluid flow through porous media using smoothed particle hydrodynamics

    , Article Transport in Porous Media ; Volume 74, Issue 3 , 2008 , Pages 331-346 ; 01693913 (ISSN) Vakilha, M ; Manzari, M. T ; Sharif University of Technology
    2008
    Abstract
    The flow of non-Newtonian fluids through two-dimensional porous media is analyzed at the pore scale using the smoothed particle hydrodynamics (SPH) method. A fully explicit projection method is used to simulate incompressible flow. This study focuses on a shear-thinning power-law model (n < 1), though the method is sufficiently general to include other stress-shear rate relationships. The capabilities of the proposed method are demonstrated by analyzing a Poiseuille problem at low Reynolds numbers. Two test cases are also solved to evaluate validity of Darcy's law for power-law fluids and to investigate the effect of anisotropy at the pore scale. Results show that the proposed algorithm can... 

    DPD simulation of electroosmotic flow in nanochannels and the evaluation of effective parameters

    , Article 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 28 June 2010 through 1 July 2010, Chicago, IL ; 2010 ; 9781600867453 (ISBN) Darbandi, M ; Zakeri, R ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    We provide the simulation of electroosmotic phenomenon in nanochannels using the Dissipative Particle Dynamics (DPD) method. We study the electroosmotic phenomenon for both newtonian and non-newtonian fluids. Literature shows that most of past electroosmotic studies have been concentrated on continuum newtonian fluids. However, there are many nano/microfluidic applications, which need to be treated as either non-newtonian fluids or non-continuum fluids. In this paper, we simulate the electroosmotic flow in nanochannel considering no limit if it is neither continuum nor non-nonewtonian. As is known, the DPD method has several important advantages compared with the classical molecular dynamics... 

    Flow of a PTT fluid through planar contractions - Vortex inhibition using rounded corners

    , Article ASME 2010 International Mechanical Engineering Congress and Exposition, IMECE 2010, Vancouver, BC, 12 November 2010 through 18 November 2010 ; Volume 7, Issue PARTS A AND B , November , 2010 , Pages 601-607 ; 9780791844441 (ISBN) Khodadadi Yazdi, M ; Ramazani S. A, A ; Hosseini Amoli, H ; Behrang, A ; Kamyabi, A ; Sharif University of Technology
    2010
    Abstract
    Contraction flow is one of important geometries in fluid flow both in Newtonian and non-Newtonian fluids. In this study, flow of a viscoelastic fluid through a planar 4:1 contraction with rounded corners was investigated. Six different rounding ratios (RR =0, 0.125, 0.25, 0.375, 0.438, 0.475, 0.488) was examined using the linear PTT constitutive equation at creeping flow and isothermal condition. Then the resulting PDE set including continuity, momentum, and PTT constitutive equations were implemented to the OpenFOAM software. The results clearly show vortex deterioration with increasing rounding diameter, so that when rounding corner exceeds a critical value, the vortex disappears... 

    Thermal transport characteristics of non-newtonian electroosmotic flow in a slit microchannel

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011, 19 June 2011 through 22 June 2011 ; Volume 1 , June , 2011 , Pages 169-176 ; 9780791844632 (ISBN) Babaie, A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    Electroosmosis has many applications in fluid delivery at microscale, sample collection, detection, mixing and separation of various biological and chemical species. In biological applications, most fluids are known to be non-Newtonian. Therefore, the study of thermal features of non-Newtonian electroosmotic flow is of great importance for scientific communities. In the present work, the fully developed electroosmotic flow of power-law fluids in a slit microchannel is investigated. The related equations are transformed into non-dimensional forms and necessary changes are made to adapt them for non-Newtonian fluids of power-law model. Results show that depending on different flow parameters... 

    On the motion of Newtonian and non-Newtonian liquid drops

    , Article Scientia Iranica ; Volume 19, Issue 5 , 2012 , Pages 1265-1278 ; 10263098 (ISSN) Aminzadeh, M ; Maleki, A ; Firoozabadi, B ; Afshin, H ; Sharif University of Technology
    2012
    Abstract
    In the present study, the motion of Newtonian and non-Newtonian liquid drops has been investigated experimentally. In order to investigate the effect of bulk fluid on drops, we have used water and air, as two fluids with different properties, and various industrial and biological applications. Image processing is utilized to analyze the images obtained by a high speed camera. The research has been separated into two parts. The first part has been devoted to the experiments in which air is the bulk fluid, and the second is related to the experiment carried out in water. The range of Reynolds number is, approximately, 50

    Electroosmotic flow of power-law fluids with temperature dependent properties

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 185-186 , 2012 , Pages 49-57 ; 03770257 (ISSN) Babaie, A ; Saidi, M. H ; Sadeghi, A ; Sharif University of Technology
    Elsevier  2012
    Abstract
    The influence of variable fluid properties on mixed electroosmotic and pressure driven flow of non-Newtonian fluids is investigated in this paper. The non-linear coupled energy and momentum equations are solved by means of an iterative numerical approach. The results reveal that the temperature dependent effects only become significant at very high values of the Debye-Hückel parameter in case of combined electroosmotic and pressure driven flow and could safely be neglected in other cases. It is observed that the physical properties variation lead to a higher mean velocity in case of pressure assisted flow and a lower mean velocity in case of pressure opposed flow. Furthermore, the...