Loading...
Search for: non-wetting-phasis
0.005 seconds

    A mathematical and experimental analysis of role of ultrasonic wave radiation on relative permeabilties in gravity drain

    , Article 73rd European Association of Geoscientists and Engineers Conference and Exhibition 2011: Unconventional Resources and the Role of Technology. Incorporating SPE EUROPEC 2011 ; Volume 7 , May , 2011 , Pages 5104-5108 ; 9781617829666 (ISBN) Najafi, I ; Keshavarzi, B ; Ghazanfari, M ; Ghotbi, C ; Amani, M ; Sharif University of Technology
    Society of Petroleum Engineers  2011
    Abstract
    This work concerns with experimental and analytical investigation of role of ultrasonic wave radiation in relative permeability of both wetting and non-wetting phases in a free gravity drainage process in porous media under the influence of ultrasonic wave. Glass beads ranged from 70 to 100 mesh sizes were packed and used in the tests. The working fluids consist of distilled water, kerosene and Doroud and Paidar crude oils as wetting and air as non-wetting phase. The measured oil recovery data along with Hagoort (1984) backward methodology were used to determine and to compare the relative permeability of wetting phases in presence and absence of ultrasonic radiation. In addition, the... 

    Investigating the role of ultrasonic wave on two-phase relative permeability in a free gravity drainage process

    , Article Scientia Iranica ; Vol. 21, issue. 3 , 2014 , p. 763-771 Keshavarzi, B ; Karimi, R ; Najafi, I ; Ghazanfari, M. H ; Ghotbi, C ; Sharif University of Technology
    Abstract
    In this work, the process of free gravity drainage under the influence of ultrasonic waves was investigated. A glass bead pack porous medium was used to perform free fall gravity drainage experiments. The tests were performed in the presence and absence of ultrasonic waves, and the data of recovery were recorded versus time under both conditions. The wetting phase relative permeability curves were obtained using the data of recovery versus time, based on the Hagoort backward methodology. Subsequently, using the wetting phase relative permeability curve, the relative permeability of non-wetting phases were calculated by performing history matching to the experimental production data. The... 

    A mathematical analysis of the mechanism of ultrasonic induced fluid percolation in porous media: Part I

    , Article Proceedings - SPE Annual Technical Conference and Exhibition, 20 September 2010 through 22 September 2010 ; Volume 7 , September , 2010 , Pages 5833-5856 ; 9781617389641 (ISBN) Najafi, I ; Sharif University of Technology
    2010
    Abstract
    This work concerns with experimentally and analytically investigation of free gravity drainage process in porous media under the influence of ultrasonic wave radiation. Glass beads ranges from 70 to 100 mesh sizes were packed and used in the tests. The working fluids consist of distilled water, kerosene and Doroud and Paidar crude oils as wetting and air as non-wetting phase. The measured oil recovery data along with Hagoort (1984) backward methodology were used to determine and to compare the relative permeability of wetting phases in presence and absence of ultrasonic radiation. In addition the relative permeability of non-wetting phases for both cases were calculated from inverse modeling...