Loading...
Search for: numerical-results
0.013 seconds
Total 211 records

    Improved S2 approximations

    , Article Annals of Nuclear Energy ; Vol. 77 , 2014 , Pages 257-264 ; ISSN: 03064549 Safari, M. J ; Bahrami, M ; Sharif University of Technology
    Abstract
    Discrete ordinates method relies on approximating the integral term of the transport equation with the aid of quadrature summation rules. These quadratures are usually based on certain assumptions which assure specific symmetry rules and transport/diffusion limits. Generally, these assumptions are not problem-dependent which results in inaccuracies in some instances. Here, various methods have been developed for more accurate estimation of the independent angle in S2 approximation, as it is tightly related to valid estimation of the diffusion coefficient/length. We proposed and examined a method to reduce a complicated problem that usually is consisting many energy groups and discrete... 

    A rate-dependent constitutive equation for 5052 aluminum diaphragms

    , Article Materials and Design ; Vol. 60, Issue 1 , 2014 , pp. 13-20 ; ISSN: 02613069 Hosseini Kordkheili, S. A ; Ashrafian, M. M ; Toozandehjani, H ; Sharif University of Technology
    Abstract
    In this article, both experimental and numerical approaches are conducted to present a constitutive equation for 5052 aluminum diaphragms under quasi-static strain rate loadings. For this purpose the stress-strain curves at different strain rates are obtained using tensile tests. Brittle behavior during tensile tests is observed due to samples thin thicknesses. Employing Johnson-Cook constitutive equation no yields in reasonable agreement with these tensile tests results. Therefore, developing a more suitable constitutive equation for aluminum diaphragms is taken into consideration. This equation is then implemented into the commercial finite element software, ABAQUS, via a developed user... 

    Experimental and numerical studies on resistance of a catamaran vessel with non-parallel demihulls

    , Article Scientia Iranica ; Vol. 21, Issue. 3 , 2014 , pp. 600-608 ; ISSN: 2345-3605 Ebrahimi, A ; Rad, M ; Hajilouy, A ; Sharif University of Technology
    Abstract
    In common catamaran vessels, demihulls are parallel to each other. In this paper, the total resistance of a catamaran vessel with non-parallel demihulls is investigated experimentally and numerically. Experiments are carried out at different Separation Ratios (S.R.), that is the ratio of fore to aft separation of the catamaran demihullsand also in two ratios of length to separation in amidships (L/Sm). The FLUENT solver, based on the Finite Volume Method (FVM), was used for numerical solution. Applying the VOF model, the free surface around the catamaran vessel and total resistance are calculated and compared with experimental results. Finally, the frictional resistance of the catamaran from... 

    Effects of preheating temperature and cooling rate on two-step residual stress in thermal barrier coatings considering real roughness and porosity effect

    , Article Ceramics International ; Vol. 40, Issue. 10 , December , 2014 , pp. 15925-15940 ; ISSN: 02728842 Rezvani Rad, M ; Farrahi, G. H ; Azadi, M ; Ghodrati, M ; Sharif University of Technology
    Abstract
    In this research, a finite element model was developed in order to simulate the two-step residual stress distribution of a thermal barrier coating system, considered to be used in diesel engine cylinder head, with a real roughness and real porosity. Two steps including the bond coat and the top coat deposition processes were taken into account. The real geometry of coating layers, including the roughness and the porosity, was also considered based on a scanning electron microscopy image. Then, effects of the convective heat transfer coefficient and initial substrate and substrate/bond coat preheating temperatures on the residual stress were studied. Obtained results illustrate that the... 

    Investigation on the effect of mold constraints and cooling rate on residual stress during the sand-casting process of 1086 steel by employing a thermomechanical model

    , Article Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science ; Vol. 45, issue. 3 , 2014 , pp. 1157-1169 ; ISSN: 1073-5615 Baghani, A ; Davami, P ; Varahram, N ; Shabani, M. O ; Sharif University of Technology
    Abstract
    In this study, the effects of mold constraints and cooling rate on residual stress were analyzed during the shaped casting process. For this purpose, an H-shaped sample was designed in which the contraction of its middle portion is highly restricted by the mold during the cooling process. The effects of an increasing cooling rate combined with mold constraints were analyzed by reducing the thickness of the middle portion in the second sample. A three-dimensional coupled temperature-displacement analysis was performed in finite-element code ABAQUS to simulate residual stress distribution, and then numerical results were verified by the hole-drilling strain-gauge method. It was concluded that... 

    Three-dimensional simulation of urine concentrating mechanism in a functional unit of rat outer medulla. I. Model structure and base case results

    , Article Mathematical Biosciences ; Vol. 258 , 2014 , pp. 44-56 ; ISSN: 00255564 Sohrabi, S ; Saidi, M. S ; Saadatmand, M ; Banazadeh, M. H ; Firoozabadi, B ; Sharif University of Technology
    Abstract
    The urine formation and excretion system have long been of interest for mathematicians and physiologists to elucidate the obscurities within the process happens in renal tissue. In this study, a novel three-dimensional approach is utilized for modeling the urine concentrating mechanism in rat renal outer medulla which is essentially focused on demonstrating the significance of tubule's architecture revealed in anatomic studies and physiological literature. Since nephrons and vasculatures work interdependently through a highly structured arrangement in outer medulla which is dominated by vascular bundles, a detailed functional unit is proposed based on this specific configuration.... 

    Numerical simulations of cyclic behaviors in light alloys under isothermal and thermo-mechanical fatigue loadings

    , Article Materials and Design ; Vol. 56 , April , 2014 , pp. 245-253 ; ISSN: 02641275 Farrahi, G. H ; Shamloo, A ; Felfeli, M ; Azadi, M ; Sharif University of Technology
    Abstract
    In this article, numerical simulations of cyclic behaviors in light alloys are conducted under isothermal and thermo-mechanical fatigue loadings. For this purpose, an aluminum alloy (A356) which is widely used in cylinder heads and a magnesium alloy (AZ91) which can be applicable in cylinder heads are considered to study their stress-strain hysteresis loops. Two plasticity approaches including the Chaboche's hardening model and the Nagode's spring-slider model are applied to simulate cyclic behaviors. To validate obtained results, strain-controlled fatigue tests are performed under low cycle and thermo-mechanical fatigue loadings. Numerical results demonstrate a good agreement with... 

    Analysis of micro-rotating disks based on the strain gradient elasticity

    , Article Acta Mechanica ; Vol. 225, issue. 7 , 2014 , pp. 1955-1965 ; ISSN: 00015970 Danesh, V ; Asghari, M ; Sharif University of Technology
    Abstract
    In this paper, the mechanical behavior of micro-rotating disks is investigated utilizing the strain gradient theory. The governing equation and boundary conditions are derived utilizing the variational method. The analytical solution for the derived equation is also presented. As a case study, some numerical results are presented to emphasize the importance of utilization of non-classical theories such as the strain gradient elasticity instead of the classical continuum theory in dealing with micro-rotating disks  

    On the prediction of shrinkage defects by thermal criterion functions

    , Article International Journal of Advanced Manufacturing Technology ; Vol. 74, issue. 1-4 , Jun , 2014 , p. 569-579 Tavakoli, R ; Sharif University of Technology
    Abstract
    The goal of the present study is to predict the formation of solidification induced defects in castings by thermal criteria functions. In a criterion function method, the heat transfer equation is firstly solved, and then the susceptibility of defect formation at every point in the casting is predicted by computing a local function, criterion function, using results of the thermal analysis. In the first part of the paper, some famous criteria functions, in particular, the Pellini and Niyama criteria, are analyzed and their shortcomings are discussed in details. Then, a new criterion function is suggested to decrease the shape-dependency issue of the former criteria. The feasibility of the... 

    Fork-shaped highly conductive pathways for maximum cooling in a heat generating piece

    , Article Applied Thermal Engineering ; Volume 61, Issue 2 , 2013 , Pages 228-235 ; 13594311 (ISSN) Hajmohammadi, M. R ; Alizadeh Abianeh, V ; Moezzinajafabadi, M ; Daneshi, M ; Sharif University of Technology
    2013
    Abstract
    In engineering practice, the space occupied by high conductivity materials together with the cost are the two elements of major concern. Therefore, seeking for more efficient designs of high conductivity pathways ('inserts'), embedded into a heat generating body constitutes a formidable challenge. The main idea of this paper is to introduce new patterns for the highly conductive pathways, called 'fork-shaped' configurations. Essentially, two types of fork-shaped pathways, 'F1' and 'F2' are introduced. Numerical results demonstrate that, these two configurations of highly conductive pathways, remarkably surpass the latest configurations reported in the literature, with the same amount of high... 

    Limit analysis of FGM circular plates subjected to arbitrary rotational symmetric loads using von-Mises yield criterion

    , Article Acta Mechanica ; Volume 224, Issue 8 , 2013 , Pages 1601-1608 ; 00015970 (ISSN) Baghani, M ; Fereidoonnezhad, B ; Sharif University of Technology
    2013
    Abstract
    In this paper, employing the limit analysis theorem, critical loading on functionally graded (FG) circular plate with simply supported boundary conditions and subjected to an arbitrary rotationally symmetric loading is determined. The material behavior follows a rigid-perfectly plastic model and yielding obeys the von-Mises criterion. In the homogeneous case, the highly nonlinear ordinary differential equation governing the problem is analytically solved using a variational iteration method. In other cases, numerical results are reported. Finally, the results are compared with those of the FG plate with Tresca yield criterion and also in the homogeneous case with those of employing the... 

    Minimum cost multiple multicast network coding with quantized rates

    , Article Computer Networks ; Volume 57, Issue 5 , 2013 , Pages 1113-1123 ; 13891286 (ISSN) Raayatpanah, M. A ; Salehi Fathabadi, H ; Khalaj, B. H ; Khodayifar, S ; Sharif University of Technology
    2013
    Abstract
    In this paper, we consider multiple multicast sessions with intra-session network coding where rates over all links are integer multiples of a basic rate. Although having quantized rates over communication links is quite common, conventional minimum cost network coding problem cannot generally result in quantized solutions. In this research, the problem of finding minimum cost transmission for multiple multicast sessions with network coding is addressed. It is assumed that the rate of coded packet injection at every link of each session takes quantized values. First, this problem is formulated as a mixed integer linear programming problem, and then it is proved that this problem is strongly... 

    Presentation and application of tunable reciprocal/nonreciprocal metamaterial transmission line based on edge-guided mode

    , Article Electromagnetics ; Volume 33, Issue 3 , Mar , 2013 , Pages 234-248 ; 02726343 (ISSN) Ghalibafan, J ; Komjani, N ; Rejaei, B ; Sharif University of Technology
    2013
    Abstract
    This article proposes a tunable composite right-/left-handed transmission line consisting of a transversely magnetized ferrite substrate periodically loaded by microstrip inductors. The gapless transition between the left- and right-handed bands (balanced response) is the main characteristic of this structure. This composite right-/left-handed transmission line is proposed in both reciprocal and nonreciprocal versions. Based on periodic structure analysis, the dispersion relation is estimated theoretically and validated numerically by the finite-element method in the reciprocal case. Theoretical and numerical results demonstrate the tunability of the proposed structures by changing the DC... 

    Three-dimensional dynamic Green's functions in transversely isotropic tri-materials

    , Article Applied Mathematical Modelling ; Volume 37, Issue 5 , March , 2013 , Pages 3164-3180 ; 0307904X (ISSN) Khojasteh, A ; Rahimian, M ; Eskandari, M ; Sharif University of Technology
    2013
    Abstract
    An analytical derivation of the elastodynamic fundamental solutions for a transversely isotropic tri-material full-space is presented by means of a complete representation using two displacement potentials. The complete set of three-dimensional point-load, patch-load, and ring-load Green's functions for stresses and displacements are given, for the first time, in the complex-plane line-integral representations. The formulation includes a complete set of transformed stress-potential and displacement-potential relations in the framework of Fourier expansions and Hankel integral transforms, that is useful in a variety of elastodynamic as well as elastostatic problems. For the numerical... 

    Numerical investigation of cone angle effect on the flow field and separation efficiency of deoiling hydrocyclones

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 49, Issue 2 , February , 2013 , Pages 247-260 ; 09477411 (ISSN) Saidi, M ; Maddahian, R ; Farhanieh, B ; Sharif University of Technology
    2013
    Abstract
    In this study, the effect of cone angle on the flow field and separation efficiency of deoiling hydrocyclones is investigated taking advantage of large eddy simulation. The dynamic Smagorinsky is employed to determine the residual stress tensor of the continuous phase. The method of Lagrangian particle tracking with an optimized search algorithm (closest cell) is applied to evaluate the separation efficiency of deoiling hydrocyclone. Simulations are performed on a 35-mm deoiling hydrocyclone with the three different cone angles of 6, 10 and 20 degree. The numerical results revealed that the changes in the cone angle would affect the velocity and pressure distribution inside hydrocyclone, and... 

    Lateral translation of an inextensible circular membrane embedded in a transversely isotropic half-space

    , Article European Journal of Mechanics, A/Solids ; Volume 39 , 2013 , Pages 134-143 ; 09977538 (ISSN) Eskandari, M ; Shodja, H. M ; Ahmadi, S. F ; Sharif University of Technology
    2013
    Abstract
    The asymmetric problem of lateral translation of an inextensible circular membrane embedded in a transversely isotropic half-space is addressed. With the aid of appropriate Green's functions, the governing equations of the problem are written as a set of coupled integral equations. With further mathematical transformations, the system of dual integral equations is reduced to two coupled Fredholm integral equations of the second kind which are amenable to numerical treatments. The exact closed-form solutions corresponding to two limiting cases of a membrane resting on the surface of a half-space and embedded in a full-space are derived. The jump behavior of results at the edge of the membrane... 

    Stability analysis in multiwall carbon nanotube bundle interconnects

    , Article Microelectronics Reliability ; Volume 52, Issue 12 , 2012 , Pages 3026-3034 ; 00262714 (ISSN) Haji Nasiri, S ; Faez, R ; Moravvej Farshi, M. K ; Sharif University of Technology
    2012
    Abstract
    Based on the transmission line model (TLM), we present an exact and general transfer function formula, useful for both single multiwall carbon nanotube (MWCNT) and MWCNT bundle interconnects. Using the standard parameters for 22-nm technology node we perform the Nyquist stability analysis, to investigate the dependence of the degree of relative stability for both single and bundle interconnects on the number of walls in each MWCNT its geometry and also on the bundle geometry. The numerical results, for 1- to 30-μm long interconnects composed of 3- to 7-wall-CNTs, show that by increasing the length or the outer shell diameter, both single and bundle interconnects become more stable. On the... 

    Adaptive access and rate control of CSMA for energy, rate, and delay optimization

    , Article Eurasip Journal on Wireless Communications and Networking ; Volume 2012 , 2012 ; 16871472 (ISSN) Khodaian, M ; Pérez, J ; Khalaj, B. H ; Crespo, P. M ; Sharif University of Technology
    2012
    Abstract
    In this article, we present a cross-layer adaptive algorithm that dynamically maximizes the average utility function. A per stage utility function is defined for each link of a carrier sense multiple access-based wireless network as a weighted concave function of energy consumption, smoothed rate, and smoothed queue size. Hence, by selecting weights we can control the trade-off among them. Using dynamic programming, the utility function is maximized by dynamically adapting channel access, modulation, and coding according to the queue size and quality of the time-varying channel. We show that the optimal transmission policy has a threshold structure versus the channel state where the optimal... 

    Theoretical model for visible light saturable absorber nanolithography

    , Article Journal of Optics (United Kingdom) ; Volume 14, Issue 12 , 2012 ; 20408978 (ISSN) Tofighi, S ; Bahrampour, A. R ; Sharif University of Technology
    2012
    Abstract
    In this paper a saturable absorber medium is employed as an optical limiter to reduce the spot size to the range of several tens of nanometres. The characteristics of a Gaussian beam are theoretically analysed upon propagation through the saturable absorber medium. Based on Maxwell equations a system of coupled nonlinear ordinary differential equations for intensity, beam radius and beam curvature is obtained. Theoretical analyses and numerical results show that the behaviour of a Gaussian beam in a saturable absorber medium strongly depends on the initial characteristics of the laser beam. Numerical results indicate that, depending on the initial conditions and a suitable saturable absorber... 

    Green's functions of a surface-stiffened transversely isotropic half-space

    , Article International Journal of Solids and Structures ; Volume 49, Issue 23-24 , 2012 , Pages 3282-3290 ; 00207683 (ISSN) Eskandari, M ; Ahmadi, S. F ; Sharif University of Technology
    2012
    Abstract
    Green's functions of a transversely isotropic half-space overlaid by a thin coating layer are analytically obtained. The surface coating is modeled by a Kirchhoff thin plate perfectly bonded to the half-space. With the aid of superposition technique and employing appropriate displacement potential functions, the Green's functions are expressed in two parts; (i) a closed-form part corresponding to the transversely isotropic half-space with surface kinematic constraints, and (ii) a numerically evaluated part reflecting the interaction between the half-space and the plate in the form of semi-infinite integrals. Some limiting cases of the problem such as surface-stiffened isotropic half-space,...