Loading...
Search for: numerical-solutions
0.015 seconds
Total 157 records

    Investigation on Direct Discrete Method for Neutron Transport Equation

    , M.Sc. Thesis Sharif University of Technology Ghafari, Mohsen (Author) ; Vosoughi, Naser (Supervisor) ; Bagher Ghofrani, Mohammad (Supervisor)
    Abstract
    Improvement of numerical solutions and application of them is very important section of engineering researches. So, there are several numerical methods and procedures for solution of equations or problems. All of them have advantages and disadvantages for selection best method. The efficiency of a method is a function of Limitation parameter like time, software and hardware. One of the recent numerical methods for engineering problems is Direct Discrete Method (DDM). This method prepares modern theory for balance equations; also this method combines some advantages of the other numerical methods like finite element and finite difference. DDM uses a double set of mesh structures namely primal... 

    Modeling of Fluid Flow and Heat Transfer in a Partially Filled Porous Channel with Wall Suction

    , M.Sc. Thesis Sharif University of Technology Hashemi, Mir Hossein (Author) ; Nouri-Borujerdi, Ali (Supervisor)
    Abstract
    This work numerically simulates pressure drop and heat transfer for flow in a pipe with porous wall. Incompressible two dimensional, ax symmetric laminar or turbulence flow with constant mass flow rate is considered. It is assumed that there is no thermal equilibrium in the porous media region between solid and fluid phase. Effect of porous wall thickness and Darcy number on the rate of heat transfer and pressure drop were investigated. The Darcy number varies from to and porous wall thickness can fill entire pipe. the turbulent model is used to calculate the fluid flow and heat transfer characteristics in turbulent flow. Nusselt number can enhance about ... 

    Investigation of Light Propagation in Inhomogeneous Cosmic Spacetimes

    , Ph.D. Dissertation Sharif University of Technology Parsi Mood, Mojahed (Author) ; Mansouri, Reza (Supervisor)
    Abstract
    In this work we investigate the propagattion of light in inhomogenous cosmic spacetime within general relativity framework. We use Lemaitr-Tolaman-Bondi metric for modeling inhomogenous spacetime. For investigation of gravitational lensing we need to solve geodesic equaions in this model. Beacuse of nonlinearity and complexity of these equations we should apply numerical methods. At first we used Runge-Kutta method with adaptive step size, but beacuse of stiffness of these equaions, the results of this method did not match to approximation methods for low deflection angles. So we try semi-implicit Rosenbrock method. Then for inspection of thin lens approximation for the first time; we... 

    Numerical Modeling of Reformer in Direct Reduction Plants

    , M.Sc. Thesis Sharif University of Technology Karami, Mitra (Author) ; Afshin, Hossein (Supervisor) ; Farhanieh, Bijan (Supervisor)
    Abstract
    Direct reduction of iron is a process to reduce iron in solid phase. The output of this procedure is direct reduced iron (DRI) that can be used in electric arc furnacewithout further changes. Midrex technology, which is the most important one among direct reduction of iron processes, provides 60% of DRI.
    Required synthesis gas for reduction process is gained from reforming of the natural gas,with the major proportion of methane, with water steam and carbon dioxide in a piece of equipment called “reformer”. As a matter of fact, reformer is a type of plug chemical reactors. Input materials (natural gas, water steam and carbon dioxide) enter from the bottom section to the prepared pipes in... 

    Auto thermal reforming of natural gas
    Surveying Feed Specification on the Effluent Quality as the Feedstock of a Methanol Unit and its Optimization

    , M.Sc. Thesis Sharif University of Technology abtahi, mohammad hossein (Author) ; farhadi, Fatollah (Supervisor)
    Abstract
    Synthesis gas is a gaseous mixture which mainly consists of carbon monoxide and hydrogen. Different methods are used to produce synthesis gas but the most important method is auto thermal reforming. This method is based upon catalytic reactions. Steam, oxygen and natural gas are the influents to the reactor and synthesis gas will be the effluent. Ni catalysts on alpha-alumina as the support media are usually used in this process. These catalysts are highly heat resistant and insure great qualifications for reactions. This thesis tries to find best solutions of synthesis gas production suitable for feeding to a methanol production unit. There are four main reactions. Three of which are highly... 

    Flow and Heat Transfer between Two Cylinders with Internal Rotation

    , M.Sc. Thesis Sharif University of Technology Kaviani, Reza (Author) ; Noori Boroujerdi, Ali (Supervisor)
    Abstract
    The objective of this project is numerical simulation of air flow and heat transfer between two horizontal concentric cylinders with rotation of inner cylinder and inertia of outer cylinder grooves on the inner cylinder. In this study, the air, meanwhile rotational motion by the inner cylinder will enter into the annular space between two cylinders with certain flow rate. It can be mentioned to cooling of power plant generators, Electric motors and rotating machines among usages of air flow between two cylinders. In this article the objective is calculation of pressure drop and Nusselt number, temperature distribution on the inner cylinder under conditions of constant temperature of... 

    Investigating the Impact of Different Topologies on Performance of Catalytic Converters

    , M.Sc. Thesis Sharif University of Technology Sadeghi, Mohammad Amin (Author) ; Kariminia, Hamid Reza (Supervisor) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    Due to their enormous CO/〖NO〗_x removal capabilitiy, catalytic converters are deemed as indispensable parts of modern vehicles. These converters are comprised of a bundle of parallel tubes which their internal walls are wash-coated with a catalyst such as platinum or rhodium. The typical geometry for the tubes’ cross-section is honeycomb. In this project, the effect of tube cross-section geometry on CO/〖NO〗_x removal performance of catalytic converters is studied. In this respect, a three-dimensional model consisted of incompressible flow, advection-diffusion, and surface reaction was developed. Candidate geometries were triangle, square, honeycomb, and circle. The results show that as the... 

    Performance of Partially Filled Mini-Channels with Porous Media

    , M.Sc. Thesis Sharif University of Technology Azimi, Adel (Author) ; Nouri, Ali (Supervisor) ; Moosavi, Ali (Co-Advisor)
    Abstract
    Laminar forced convection flow through a channel partially filled with a porous material was numerically studied in this thesis. The Navier-Stokes and Brinkman-Forchheimer equations were used to model the fluid flow in the free and porous regions, respectively. Coupling of the pressure and velocity fields was resolved using the SIMPLEC algorithm. The local thermal equilibrium was adopted in the energy equation. The effects of the thermal conductivity ratio, Darcy number, porosity, Reynolds number and height of the porous insert on velocity and temperature field were investigated. The results show that the flow behavior and its associated heat transfer are susceptible to the variation of the... 

    Some Innovations in Numerical Simulation of Inviscid Three Dimensional Flow with Moving Boundaries

    , Ph.D. Dissertation Sharif University of Technology Ramezani, Ali (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    The main subject of this thesis is to improve conventional CFD algorithms applied in numerical simulation of inviscid unsteady flows around moving boundaries with large relative motions, on unstructured grids. All challenges in this regard are reviewed, and appropriate efficient schemes are introduced to address them. A new scheme is presented for valid grid generation during grid movement and is implemented for 2D and 3D problems. Customary three dimensional convergence acceleration techniques such as implicit time stepping and multigriding have been applied. For implicit solution of the flow equations a new algorithm is used. Via a special renumbering algorithm, the approximate... 

    Numerical Investigation of Dewetting Over Topographicaly Srtuctured Substrate on Nanometric Scale

    , M.Sc. Thesis Sharif University of Technology HajiGhasemi, Mustafa (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Thin liquid films on solid substrates are of considerable relevance in widespread of natural and technological fields. Examples are eye irrigation, biological cell interaction, tertiary oil recovery, coating, painting, lubrication, integrated circuits, micro- and nano-electronic devices, to name just a few. It is well known that liquid films are not always stable and there are verities of factors that may destabilize and expose the film to dynamical processes which leads to removal of the liquid from the substrate, the phenomenon so-called dewetting, either by nucleation or spinodal mechanisms. In many cases dewetting is destructive but there are several situation in which dewetting turns... 

    Numerical Investigation of Bidirectional Swirl Flow’s Structure in Vortex Engine

    , M.Sc. Thesis Sharif University of Technology Mehrdad, Mohammad (Author) ; Saidi, Mohammad Hasan (Supervisor)
    Abstract
    Numerical investigation of flow field and determination of velocity components in swirl flow are novel and important subjects in combustion chamber of swirl flow. The exact understanding of vortex phenomena and flow structures in vortex engine results in better design and control in terms of stability, geometry, cooling, and combustion efficiency. Although, numerical approaches are computationally complex, they are worthwhile and efficient. The aim of this work is to study the velocity field in a bidirectional swirl flow within the combustion chamber using numerical approaches. The investigation of flow field has been performed in the cold chamber. Four different models (RSM and LES) have... 

    Investigation of Atrium Shape Influence on Natural Ventilation Performance & CFD Model

    , M.Sc. Thesis Sharif University of Technology Shafiee, Ali (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    In modern era, standpoints about atrium design have been revolutionized. In modern architecture, atrium not only designed for illuminating purposes but also designed by natural ventilation and passive cooling policies. Numerous parameters are making role in thermal efficiency of Atrium. A couple of these parameters are Atrium shape and openings area. In high rise atria the lower level rooms enjoy the advantage of buoyancy-driven ventilation while the upper level rooms suffer from its lack or weak presence. One strategy to solve this problem is designing building with various opening area in different heights but manipulating the opening size is restricted by some facts. Excessive Opening’s... 

    Three Dimensional Simulation and Experimental Modeling of Two Stage GM Type Pulse Tube Refrigeration with Double-Inlet

    , M.Sc. Thesis Sharif University of Technology Ashouri, Mahyar (Author) ; Saidi, Mohammad Hassan (Supervisor)
    Abstract
    There are numerous ways available to achieve low temperatures that cryocoolers might be among the most important of them. In the meantime, the pulse tube refrigerator has a special place due to its simple geometry and not be using any moving parts. This simple property make the pulse tube refrigerator one of the most popular methods to achieve low temperatures. Nowadays, a pulse tube refrigerator is used for cooling in the range of 4 to 123 Kelvin in two form of one-stage and two-stage and up to an approximate power of 1 KW. Today, due to the temperature and the amount of power required for cooling, as well as the time it takes to reach that temperature, this chiller is used in medical,... 

    Numerical Study of Passive Heat Transfer Enhancement Methods in Automobile Radiator

    , M.Sc. Thesis Sharif University of Technology Asadollahi Shahbaboli, Pasha (Author) ; Mousavi, Ali (Supervisor)
    Abstract
    In this study, a three dimensional model of water-ethylene glycol based aluminum oxide nanofluid in the laminar flow of an automobile radiator has been numerically studied. The passive heat transfer enhancement method of twisted tape insertion in the flat tubes of radiator is used. The effects of different parameters on heat transfer and pressure drop have been investigated. Simulation results show that utilizing twisted tapes is an effective way of enhancing heat transfer in an automobile radiator. Despite the pressure drop penalty of using twisted tapes, the thermal performance factor which is a proper criteria for evaluating the practical use of the twisted tapes and considers the effect... 

    Compositional Simulation of CO2 Injection Process by Using Higher Order Finite Element Methods

    , M.Sc. Thesis Sharif University of Technology Shakourifar, Nima (Author) ; Pishvaie, Mahmmoud Reza (Supervisor)
    Abstract
    In most of the commercial and academic multiphase flow simulators, the numerical method in use is based on finite difference methods which can lead the solution toward numerical dispersions or even oscillations. These methods are very sensitive to the size of computational grid blocks. Even if we change the numerical method from finite difference to linear finite element (hFEM), still there will be such problems and size of grid blocks will be crucial in getting proper results which can lead to millions of computational grid blocks. One way to deal with this problem is using nonlinear finite element methods (pFEM) also known as higher-order finite element methods, Also compositional... 

    Numerical Analysis and Optimization of Backward Swept OnHorizontal Axis Wind Turbine Blade

    , M.Sc. Thesis Sharif University of Technology Salari, Mohammad Sadegh (Author) ; Boroushaki, Mehrdad (Supervisor) ; Rajabi Qahnuyeh, Abbas (Co-Advisor) ; Zarif Boushehri, Behzad (Co-Advisor)
    Abstract
    Aerodynamical design of backward swept for a horizontal axis wind turbine blade has been carried out to produce more power. Computational Fluid Dynamics (CFD) calculations were used for solving the conservation equations in one outer stationary reference frame and one inner rotating reference frame, where the blades and grids were fixed in reference to the rotating frame. The Reynolds Averaged Navier-Stokes (RANS) solver was validated in a test case, the National Renewable Energy Laboratory (NREL) VI blades. Simulation results show considerable agreement with the measurements. Three different turbulence models have been compared: Spalart-Allmaras, the Standard K-ε, and Shear Stress Transport... 

    Analytical and Parametric Study of Telescopic Lead Shear Damper

    , M.Sc. Thesis Sharif University of Technology Homaei, Hossein (Author) ; Eskandari, Morteza (Supervisor) ; Arghavani, Jamal (Supervisor)
    Abstract
    This research studies behavior and implementing of telescopic lead shear damper in structures. Telescopic lead shear damper (TLSD) is a type of metallic yielding dampers that can dissipated energy with usage of shear yielding of lead. TLSD is made from behind act of two lead shear damper (LSD) like a telescope. Lead shear damper composed of two coaxial steel pipes where their interfacial gap is filled with pure lead. The interface of lead and steel pipes are roughened in a threaded form to guarantee the no-slip condition across the interface. Due to stable and fat force displacement hysteresis loops of TLSD, this device can be used in structures subjected to wind, seismic, and other dynamic... 

    Implementing the Appropriate Numerical Method for Modeling the Two-Phase Flow in Upriser Pipe of Airlift Pump

    , M.Sc. Thesis Sharif University of Technology Moezzi Najafabadi, Mahsa (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Airlift pumps are devices for lifting liquid phase incorporating the gas phase to be injected in the bottom of the liquid column. Gas-liquid two-phase flow being the main part of the flow through these systems, flowing in vertical pipes of airlift pumps has different regimes namely bubbly, slug, churn and annular. Generally these regimes appear starting from bubbly to annular from bottom to top of the upriser pipe. Gas/liquid multiphase flows occur in a wide range of natural and man-made situations such as boiling heat transfer, cloud cavitation, bubble columns and reactors in the chemical industry, cooling circuits of power plants, spraying of liquid fuel and paint, emulsions, rain, bubbles... 

    Hydro-Acoustic Analysis and Noise Reduction of Marine Propellers Using Boundary Element Method and Inverse Method

    , Ph.D. Dissertation Sharif University of Technology Ebrahimi, Abouzar (Author) ; Seif, Mohammad Saeed (Supervisor) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    One of the most important components of the noise produced by ships is the propeller noise, which reducing it can significantly reduce the overall noise of the ship. The purpose of this research is to reduce the propeller noise by combining the boundary element method, solving noise equations, and inverse method. In the first section of this thesis, a numerical flow solver software is developed that solve the flow around the impeller using the boundary element (panel) method and calculate the pressure distribution, velocity distribution, thrust, and torque of the propeller. Results show that for low skew and rake propellers, the error of numerical results is between 4 to 7 percent, and for... 

    , M.Sc. Thesis Sharif University of Technology Salari, Sina (Author) ; Farhanieh, Bijan (Supervisor)
    Abstract
    Centrifugal Fans are widely used in industrial and commercial applications, from shop ventilation to material handling to boiler applications. They consume extremely high amount of energy each year. Because of this high consumption, even a small efficiency improvement could led to high amount of energy saving. Many projects have been done with this goal up to now, and present work is one of them, with aim to optimize a industrial centrifugal BI fan performance, with wheel diameter about 400 mm. The research has been done based on 3D numerical methods, done by commercial code Fluent 6.3, in steady state. MRF and k-E models have been used to simulate flow around blades, and turbulence...