Loading...
Search for: optical-switches
0.008 seconds
Total 31 records

    All Optical Reconfigurable Network for Data Centers

    , Ph.D. Dissertation Sharif University of Technology Khani, Elham (Author) ; Hessabi, Shaahin (Supervisor) ; Koohi, Somayyeh (Supervisor)
    Abstract
    The ever-expanding growth of internet traffic enforces deployment of massive Data Center Networks (DCNs) supporting high performance communications. Optical switching is being studied as a promising approach to fulfill the surging requirements of large scale data centers. Data center networks include hundreds of thousands of nodes that require flexible, high bandwidth, and low power infrastructures for their communications. Optical interconnection networks supply the required bandwidth, consuming much lower power compared to their electrical counterparts. The heterogeneous nature of data centers’ traffic needs a flexible network architecture which can be dynamically configured according to... 

    Design of Volume Holographic Code Division Multiple Access (CDMA) Systems

    , M.Sc. Thesis Sharif University of Technology Parsay, Alireza (Author) ; Salehi, Javad (Supervisor)
    Abstract
    The amount of assigned computation to data centers, which generally process data streams in a parallel manner has grown in recent years. Switches are one of the most important components in such centers, and their appropriate design can reduce the power loss and increase the processing gain. Among such devices, holographic CDMA switches, which exploit the high storage capability of thin holograms to reduce the size of switches, are suitable alternatives to the traditional electronic switches. In this research, the fairly high power loss of such switches has significantly decreased by modifying the output filter. This modification includes two steps. In the first, the typical matched filter... 

    Quantum Interference and Coherence and Electromagnetic Induced Transparency in Multilevel Atomic Systems

    , Ph.D. Dissertation Sharif University of Technology Naseri, Tayebeh (Author) ; Sadighi Bonabi, Rasoul (Supervisor)
    Abstract
    This thesis deals with the theoretical and experimental investigation of quantum interference and coherence, and electromagnetic induced transparency (EIT) in multi-level atomic systems such as hot and cold Rb atoms, semiconductor quantum dots and wells. Optical properties of atomic media in presence of coherent laser fields and incoherent fields are studied.
    Theoretical studies verify the crucial role of atomic coherence due to quantum interference in modifying optical properties of atomic media. Suitable and efficient models based on multi-level atomic systems to investigate the optical properties and, optical bistability and multistability are proposed. The most advantages of these... 

    All-Optical Switching Based on Quantum Interference and Coherence

    , M.Sc. Thesis Sharif University of Technology Nikaeen, Morteza (Author) ; Sadighi-Bonabi, Rasoul (Supervisor)
    Abstract
    Quantum interference and coherence are responsible for a novel set of physical phenomena, where Electromagnetically Induced Transparency is one of the most important of them. Each of these phenomena can make a new possibility for modifying the optical properties of a coherently prepared medium. Fast controllability of optical properties in one hand and flexibility of this control process in the other hand, are important factors that attract interests into coherent control of light .Coherent control of optical properties of the medium can be used in designing some advanced and challenging devices including All-Optical Switches. In this work , in a consistent picture, using a step by step... 

    Electromagnetically induced phase grating via population trapping condition in a microwave-driven four-level atomic system

    , Article Journal of the Optical Society of America B: Optical Physics ; Vol. 31, issue. 11 , November , 2014 , p. 2879-2884 ; ISSN: 07403224 Naseri, T ; Sadighi-Bonabi, R ; Sharif University of Technology
    Abstract
    An electromagnetically induced phase grating (EIG) controlled by coherent population trapping (CPT) in a fourlevel Y-type atomic system is studied. The CPT condition promotes significantly the dispersion of light into the first-order diffraction in constructing a phase modulation grating by transferring energy from zero-order to firstorder diffraction. The diffraction efficiency of the phase grating is enhanced by up to 30% of the total probe intensity at the first-order diffraction. The present atomic scheme takes full advantage of the microwave-driven field for generating the EIG, which induces the quantum coherence and controls linear and nonlinear behaviors of the present system.... 

    All-optical wavelength-routed architecture for a power-efficient network on chip

    , Article IEEE Transactions on Computers ; Vol. 63, issue. 3 , 2014 , p. 777-792 Koohi, S ; Hessabi, S ; Sharif University of Technology
    Abstract
    In this paper, we propose a new architecture for nanophotonic Networks on Chip (NoC), named 2D-HERT, which consists of optical data and control planes. The proposed data plane is built upon a new topology and all-optical switches that passively route optical data streams based on their wavelengths. Utilizing wavelength routing method, the proposed deterministic routing algorithm, and Wavelength Division Multiplexing (WDM) technique, the proposed data plane eliminates the need for optical resource reservation at the intermediate nodes. For resolving end-point contention, we propose an all-optical request-grant arbitration architecture which reduces optical losses compared to the alternative... 

    FWM-based SAC label recognition for optical packet switched networks

    , Article 2013 IEEE Photonics Conference, IPC 2013 ; 2013 , Pages 519-520 ; 9781457715075 (ISBN) Nezamalhosseini, S. A ; Dizaji, M. R ; Fouli, K ; Chen, L. R ; Marvasti, F ; Sharif University of Technology
    2013
    Abstract
    We propose a flexible four-wave mixing-based label recognition technique for low-weight spectral amplitude codes in optical packet-switched networks. We experimentally demonstrate label recognition, packet switching, and error-free transmission  

    Novel FWM-based spectral amplitude code label recognition for optical packet-switched networks

    , Article IEEE Photonics Journal ; Volume 5, Issue 4 , 2013 ; 19430655 (ISSN) Nezamalhosseini, S. A ; Rezagholipour Dizaji, M ; Fouli, K ; Chen, L.R ; Marvasti, F ; Sharif University of Technology
    2013
    Abstract
    We propose and demonstrate a novel architecture for four-wave mixing (FWM)-based recognition of spectral amplitude code (SAC) labels in optical packet-switched networks. With a proper code design, a unique FWM idler for each SAC label, referred to as a label identifier (LI), is generated in a nonlinear medium. A serial array of fiber Bragg gratings is then used to reflect the LI wavelengths. Each LI is associated with a unique amount of delay between two optical signals received at two photodiodes (PDs). Label recognition is then achieved by measuring this unique time delay (referred to as the characteristic delay). The main advantages of the proposed method include the following: no... 

    proposal for tunable dual channel transmitter and mechano-optical switch based on photonic crystal

    , Article Applied Optics ; Volume 51, Issue 32 , 2012 , Pages 7784-7787 ; 00036935 (ISSN) Vahabzadeh, Y ; Noshad, M ; Sharif University of Technology
    OSA - The Optical Society  2012
    Abstract
    In this article we propose a novel mechano-optical switch and dual channel transmitter based on photonic crystal. The device consists of two waveguides and an elliptical cavity in a square lattice structure. Two optical signals at separate wavelengths are inserted in the input waveguide. The elliptical cavity can be rotated using a mechanical force, which results in the control of transmission efficiency at each of the wavelengths. In addition, rotation of the cavity can be considered as a switching action, which changes on-off states of the output signals  

    Scalable architecture for a contention-free optical network on-chip

    , Article Journal of Parallel and Distributed Computing ; Volume 72, Issue 11 , 2012 , Pages 1493-1506 ; 07437315 (ISSN) Koohi, S ; Hessabi, S ; Sharif University of Technology
    2012
    Abstract
    This paper proposes CoNoC (Contention-free optical NoC) as a new architecture for on-chip routing of optical packets. CoNoC is built upon all-optical switches (AOSs) which passively route optical data streams based on their wavelengths. The key idea of the proposed architecture is the utilization of per-receiver wavelength in the data network to prevent optical contention at the intermediate nodes. Routing optical packets according to their wavelength eliminates the need for resource reservation at the intermediate nodes and the corresponding latency, power, and area overheads. Since passive architecture of the AOS confines the optical contention to the end-points, we propose an electrical... 

    Efficient optical resource allocation and QoS differentiation in optical burst switching networks utilizing hybrid WDM/OCDM

    , Article Journal of Lightwave Technology ; Volume 30, Issue 15 , 2012 , Pages 2427-2441 ; 07338724 (ISSN) Beyranvand, H ; Salehi, J. A ; Sharif University of Technology
    2012
    Abstract
    In this paper, a QoS differentiation framework is proposed for an optical burst switching (OBS) multiservice network. Furthermore, hybrid wavelength division multiplexing and optical code division multiplexing (WDM/OCDM) scheme is used to mitigate the blocking probability of OBS networks. In our study, the measurement criteria of QoS are the blocking probability, OBS network delay, transmission rate, and OCDM probability of error. In order to increase the bandwidth efficiency and control the multiplexing interference effect of OCDM, an advanced optical resource allocation strategy is introduced. The proposed strategy is also compared with a conventional strategy based on random allocation.... 

    All optical switch based on Fano resonance in metal nanocomposite photonic crystals

    , Article Optics Communications ; Volume 284, Issue 8 , 2011 , Pages 2230-2235 ; 00304018 (ISSN) Asadi, R ; Malek Mohammad, M ; Khorasani, S ; Sharif University of Technology
    Abstract
    We investigate the potential of plasmonic resonance in metal nanocomposite materials for the design of photonic crystal all optical switches by numerical methods. We study the absorption effect of the plasmonic resonance on the Fano resonances of one dimensional photonic crystal slabs covered by a metal nanocomposite layer. It is shown that the absorption reduces the contrast of the Fano resonances. However, for adequate metal nanoparticle concentrations it is possible to achieve both sufficiently sharp Fano resonance and strong Kerr nonlinearity, which provides a suitable condition for the design of high contrast and low threshold switches  

    Optical bistable switching with Kerr nonlinear materials exhibiting a finite response time in two-dimensional photonic crystals

    , Article Volume 7713 ; Proceedings of SPIE - The International Society for Optical Engineering, 12 April 2010 through 15 April 2010 , 2010 ; 0277786X (ISSN) ; 9780819481863 (ISBN) Naqavi, A ; Monem Haghdoost, Z ; Abediasl, H ; Khorasani, S ; Mehrany, K ; Sharif University of Technology
    Abstract
    Effect of relaxation time on the performance of photonic crystal optical bistable switches based on Kerr nolinearity is discussed. This paper deals with optical pulses with the duration of about 50 ps. In such cases the steady state response of the optical device can be used to approximate the pulse evolution if the nonlinearity is assumed instantaneous, hence analytical solutions such as the coupled mode theory can be used to obtain the time evolution of the electromagnetic fields. However if the relaxation time of the material nonlinear response is also considered, changes in the power levels and in the shape of the hystersis loop is observed. In this case, we use the nonlinear finite... 

    Optimum operation of single cavity photonic switches

    , Article Proceedings of SPIE - The International Society for Optical Engineering, 25 January 2010 through 27 January 2010 ; Volume 7607 , January , 2010 ; 0277786X (ISSN) ; 9780819480033 (ISBN) Naqavi, A ; Monem Haghdoost, Z ; Edalatipour, M ; Khorasani, S ; Mehrany, K ; Sharif University of Technology
    2010
    Abstract
    In this work, an optimum frequency is found for the operation of single cavity photonic switches. At this optimum point, the transmission contrast of ON and OFF states takes its highest value, while keeping the device power threshold relatively low and the device speed acceptably high. Then, the dynamic behavior of a typical single cavity all optical switch is investigated in the optimum operation point through temporal Coupled Mode Theory. Switching speed and power are discussed, and the device is shown to be applicable for telecommunication and data processing applications. The analysis is quite general, and can be used for resonant structures, such as photonic crystals and microring... 

    Switchable on/off drug release from gold nanoparticles-grafted dual light- and temperature-responsive hydrogel for controlled drug delivery

    , Article Materials Science and Engineering C ; Volume 76 , 2017 , Pages 242-248 ; 09284931 (ISSN) Amoli Diva, M ; Sadighi Bonabi, R ; Pourghazi, K ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A switchable dual light- and temperature-responsive drug carrier using gold nanoparticles (Au NPs)-grafted poly(dimethylacrylamide-co-acrylamide)/poly acrylic acid [P(DMA-co-AAm)/PAAc] hydrogel was prepared by free radical polymerization procedure using N,N-methylenebisacrylamide as cross-linker and ammonium persulfate as initiator. Initial P(DMA-co-AAm) hydrogel and uniformly-distributed stable Au NPs, prepared by reduction of hydrogen tetrachloroaureate (III) hydrate in the presence of trisodium citrate, were synthesized separately. Then, the prepared P(DMA-co-AAm) and Au NPs were added to an acrylic acid solution along with the cross-linker and initiator to prepare PAAc hydrogel within... 

    Laser-assisted triggered-drug release from silver nanoparticles-grafted dual-responsive polymer

    , Article Materials Science and Engineering C ; Volume 76 , 2017 , Pages 536-542 ; 09284931 (ISSN) Amoli Diva, M ; Sadighi Bonabi, R ; Pourghazi, K ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Laser assisted drug release from a synthesized plain polymer composed of poly (butyl methacrylate-co-acrylamide-co-methacrylic acid) [P(BMA-co-AAm-co-MAA)] and a metallo-polymer composed of silver nanoparticles (Ag NPs) grafted plain polymer (the nanocomposite) were studied to investigate their capability to serve as drug carriers. Positive temperature dependent swelling changes were observed for both carriers and their thermal sensitivity and thermal and optical switching properties were investigated in two buffered solutions. An acidic solution with pH = 1.2 to simulate stomach body condition and a neutral solution with pH = 7.4 to simulate intestine condition. Reversible phase transition... 

    Spectrum-Convertible BVWXC placement in OFDM-based elastic optical networks

    , Article IEEE Photonics Journal ; Volume 9, Issue 1 , 2017 ; 19430655 (ISSN) Hadi, M ; Pakravan, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Spectrum conversion can improve the performance of orthogonal frequency division multiplexing (OFDM)-based elastic optical networks (EONs) by relaxing the continuity constraint and consequently reducing connection request blocking probability during routing and spectrum assignment process. We propose three different architectures for including spectrum conversion capability in bandwidth-variable wavelength cross-connects (BVWXCs). To compare the capability of the introduced architectures, we develop an analytical method for computing average connection request blocking probability in a spectrum-convertible OFDM-based EON in which all, part, or none of the BVWXCs can convert the spectrum. An... 

    Investigating optical properties of one-dimensional photonic crystals containing semiconductor quantum wells

    , Article International Journal of Optics ; Volume 2017 , 2017 ; 16879384 (ISSN) Mokhtarnejad, M ; Asgari, M ; Sabatyan, A ; Sharif University of Technology
    Abstract
    This study examined MQWs made of InGaAs/GaAs, InAlAs/InP, and InGaAs/InP in terms of their band structure and reflectivity. We also demonstrated that the reflectivity of MQWs under normal incident was at maximum, while both using a strong pump and changing incident angle reduced it. Reflectivity of the structure for a weak probe pulse depends on polarization, intensity of the pump pulse, and delay between the probe pulse and the pump pulse. So this system can be used as an ultrafast all-optical switch which is inspected by the transfer matrix method. After studying the band structure of the one-dimensional photonic crystal, the optical stark effect (OSE) was considered on it. Due to the OSE... 

    Energy-efficient fast configuration of flexible transponders and grooming switches in OFDM-based elastic optical networks

    , Article Journal of Optical Communications and Networking ; Volume 10, Issue 2 , 2018 , Pages 90-103 ; 19430620 (ISSN) Hadi, M ; Pakravan, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    We investigate the problem of energy-efficient resource allocation constrained to quality of service and physical requirements in orthogonal frequency division multiplexing (OFDM)-based elastic optical networks and propose a fast two-stage algorithm to solve it. The first stage of the proposed algorithm deals with routing, traffic grooming, and traffic ordering and mainly aims at minimization of the number of deployed optical amplifiers and transponders. We provide an integer linear program for routing and traffic grooming and propose a heuristic procedure, which yields its near-optimum solution in a shorter runtime. In the second stage, we optimize transponder parameters to minimize total... 

    Internally coded time-hopping coherent ultra-short light pulse code division multiple access scheme with optical amplifier and its performance analysis using additive noise model

    , Article IET Communications ; Volume 3, Issue 1 , 2009 , Pages 75-82 ; 17518628 (ISSN) Tabataba, F. S ; Nasiri Kenari, M ; Sharif University of Technology
    2009
    Abstract
    The internally coded time-hopping coherent ultra-short light pulse code division multiple access (CULP CDMA) scheme (recently introduced) with an optical amplifier is described and its performance in fibre-optic communication systems is analysed. In accordance with the important role of optical amplifiers in optical communication systems, a preamplifier at the input of the receiver is used in order to compensate the losses because of the spectral encoder, spectral decoder and optical fibre path. The authors evaluate the bit error rate of the system considering the effects of the multiple access interference, noise because of the optical amplifier and thermal noise using saddle point...