Loading...
Search for: optimum
0.008 seconds
Total 421 records

    Developing an electro-thermal model to determine heat generation and thermal properties in a lithium-ion battery

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 147, Issue 21 , 2022 , Pages 12253-12267 ; 13886150 (ISSN) Mahboubi, D ; Jafari Gavzan, I ; Saidi, M. H ; Ahmadi, N ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Lithium-ion batteries should continuously be operated at the optimum temperature range (15∼40∘C) for the best performance. Surface temperature monitoring is critical for the safe and efficient operation of the battery. In this study, initially, the electrical parameters of the battery are determined by applying a second-order equivalent circuit model. This model then is integrated with a thermal model based on the temperature dependent behavior of the electrical parameters and the heat generated. The input parameters to the electro-thermal model include the current, the ambient fluid temperature and the output parameters include the terminal voltage, state of charge, cell core temperature... 

    A combination of deep learning and genetic algorithm for predicting the compressive strength of high-performance concrete

    , Article Structural Concrete ; Volume 23, Issue 4 , 2022 , Pages 2405-2418 ; 14644177 (ISSN) Ranjbar, I ; Toufigh, V ; Boroushaki, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    This article presented an efficient deep learning technique to predict the compressive strength of high-performance concrete (HPC). This technique combined the convolutional neural network (CNN) and genetic algorithm (GA). Six CNN architectures were considered with different hyper-parameters. GA was employed to determine the optimum number of filters in each convolutional layer of the CNN architectures. The resulted CNN architectures were then compared to each other to find the best architecture in terms of accuracy and capability of generalization. It was shown that all of the proposed CNN models are capable of predicting the HPC compressive strength with high accuracy. Finally, the best of... 

    Design and optimization of a large-scale permanent magnet synchronous generator

    , Article Scientia Iranica ; Volume 29, Issue 1 D , 2022 , Pages 217-229 ; 10263098 (ISSN) Alemi-Rostami, M ; Rezazadeh, G ; Alipour Sarabi, R ; Tahami, F ; Sharif University of Technology
    Sharif University of Technology  2022
    Abstract
    Direct-drive permanent magnet synchronous generators enjoy numerous advantages including improved reliability, low maintenance, long life, and developed performance characteristics. In recent years, many researchers have worked on these generators to enhance their performance, especially for the wind turbine application. The focus of this paper is on the development of a step-by-step method for the design of a permanent magnet synchronous generator. Then, the winding function method is used to model the generator and calculate its output characteristics analytically. The analytical results of the designed generator are validated using Finite Element Analysis (FEA) and it is demonstrated that... 

    Effective promotion of g–C3N4 photocatalytic performance via surface oxygen vacancy and coupling with bismuth-based semiconductors towards antibiotics degradation

    , Article Chemosphere ; Volume 287 , 2022 ; 00456535 (ISSN) Hasanvandian, F ; Moradi, M ; Aghaebrahimi Samani, S ; Kakavandi, B ; Rahman Setayesh, S ; Noorisepehr, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this research, the potential of bismuth chromate (BCO), a new bismuth-based semiconductor belongs to the family of Bi2XO6 (X = Mo, W, or Cr), was introduced by a novel 1D/2D structure consist of BCO nanobelts and N2-freezed ultra-wrinkled graphitic carbon nitride (N–CN) nanosheets. To enhance intimate contact between BCO and N–CN (BCO/N–CN composite), surface oxygen vacancy (VO) was created as an efficient electron transfer highway using a simple alkaline-treatment-assisted method. Various characterization techniques, including XRD, FT-IR, EPR, FE-SEM, TEM, BET, DRS, PL, EIS, and photocurrent transient analyses were conducted to elucidate the physicochemical aspects of catalysts. The... 

    An optimized thermal cracking approach for onsite upgrading of bitumen

    , Article Fuel ; Volume 307 , 2022 ; 00162361 (ISSN) Salehzadeh, M ; Kaminski, T ; Husein, M. M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Onsite partial upgrading is a promising strategy for facilitating pipeline transportation of bitumen without the use of diluent. In the present work, a one-step treatment using an autoclave is optimized toward upgrading Alberta bitumen of 9.6 API gravity and 925,000 cP viscosity. The thermal cracking process was kept simple in order to maintain an economic and environmental advantage. Optimum conditions entailed 75 min of reaction time at 420 °C, without quenching the reactor. These conditions corresponded to highest centrifuged oil product yield of 73.3 ± 1.1 wt%, viscosity of 34 ± 2 cP and API gravity of 18.9 ± 0.5. H-NMR, CHNS and FTIR measurements revealed thermally cracked asphaltenes... 

    Optimum design of retaining structures under seismic loading using adaptive sperm swarm optimization

    , Article Structural Engineering and Mechanics ; Volume 81, Issue 1 , 2022 , Pages 93-102 ; 12254568 (ISSN) Khajehzadeh, M ; Kalhor, A ; Tehrani, M. S ; Jebeli, M ; Sharif University of Technology
    Techno-Press  2022
    Abstract
    The optimum design of reinforced concrete cantilever retaining walls subjected to seismic loads is an extremely important challenge in structural and geotechnical engineering, especially in seismic zones. This study proposes an adaptive sperm swarm optimization algorithm (ASSO) for economic design of retaining structure under static and seismic loading. The proposed ASSO algorithm utilizes a time-varying velocity damping factor to provide a fine balance between the explorative and exploitative behavior of the original method. In addition, the new method considers a reasonable velocity limitation to avoid the divergence of the sperm movement. The proposed algorithm is benchmarked with a set... 

    A comprehensive study on the complete charging-discharging cycle of a phase change material using intermediate boiling fluid to control energy flow

    , Article Journal of Energy Storage ; Volume 35 , 2021 ; 2352152X (ISSN) Hosseininaveh, H ; Mohammadi, O ; Faghiri, S ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The low melting and solidification rates of phase change materials (PCM), which traces back to their low thermal conductivity coefficient, has led the application of these materials to face limitations. This paper aims to explore the effectiveness of a novel method called intermediate boiling fluid (IBF) in speeding up the energy storage and transfer processes in PCMs during a complete charging-discharging cycle. Throughout this novel technique, paraffin and acetone are utilized as PCM and IBF, respectively. In the solidification process, there is no direct contact between the cold source and the molten paraffin, while acetone, as an intermediate fluid, is being boiled via absorbing... 

    Biodiesel production from sunflower oil using k2co3 impregnated kaolin novel solid base catalyst

    , Article JAOCS, Journal of the American Oil Chemists' Society ; Volume 98, Issue 6 , 2021 , Pages 633-642 ; 0003021X (ISSN) Jalalmanesh, S ; Kazemeini, M ; Rahmani, M. H ; Zehtab Salmasi, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Kaolin clay material was loaded with potassium carbonate by impregnation method as a novel, effective, and economically heterogeneous catalyst for biodiesel production of sunflower oil via the transesterification reaction. The structural and chemical properties of the produced catalysts were characterized through several analyses including the X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and Brunauer–Emmett–Teller specific surface area. These revealed the best catalyst for the investigated reaction among different ones prepared based upon various impregnation extent of the potassium carbonate. The influence of this parameter was examined through a... 

    Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell

    , Article Renewable Energy ; Volume 163 , 2021 , Pages 1626-1636 ; 09601481 (ISSN) Khatibi, M ; Khorasheh, F ; Larimi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    CaO derived from calcined eggshell was doped with Na–K by wet impregnation method and the effect of different Na/K molar ratios was investigated on biodiesel production from canola oil. The catalysts were characterized by X-ray Powder Diffraction (XRD), Brunauer–Emmett–Teller (BET), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Thermogravimetric (TGA) analyses. FAME yields were determined by Gas Chromatography-Mass Spectrometry (GC-MS). The Na–K/CaO catalyst with Na/K molar ratio of 1 showed the highest FAME yield of 97.6% at optimum reaction conditions. Structural investigation of materials revealed that FAME yield was proportional to the number of basic sites on... 

    The impacts of utilizing nano-encapsulated PCM along with RGO nanosheets in a pulsating heat pipe, a comparative study

    , Article International Journal of Energy Research ; Volume 45, Issue 13 , 2021 , Pages 19481-19499 ; 0363907X (ISSN) Mohammadi, O ; Shafii, M. B ; Rezaee Shirin Abadi, A ; Heydarian, R ; Ahmadi, M. H ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    Heat pipes are useful devices in heat transfer and particularly, in cooling systems. Given the high demand for cooling systems in various applications, an improvement in the performance of heat pipes has gained much attraction in recent years. In this study, the effects of utilizing working fluids with different thermal properties on the performance of pulsating heat pipes (PHP) are experimentally studied. Hence, nano-encapsulated phase change material (NPCM), reduced graphene oxide nanosheets, and their mixture, as a novel hybrid nanofluid, are prepared and dispersed in water as a working fluid. NPCM at 3 concentrations of 5, 10, and 20 g/L, as well as nanosheets at three concentrations of... 

    Aerodynamic enhancement and improving the performance of a six-megawatt dowec wind turbine by micro-plasma actuator

    , Article International Journal of Mechanical Sciences ; Volume 195 , 2021 ; 00207403 (ISSN) Omidi, J ; Mazaheri, K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    We have investigated the usage of a Dielectric Barrier Discharge (DBD) plasma actuator to improve the aerodynamic performance of an offshore 6 MW wind turbine. By controlling the aerodynamic load combined with pitch angles of 2, 5, and 10 degrees, we studied the plasma actuator effect on the overall harvested power. Actuators were installed in single and tandem configurations in different chord-wise locations to find the optimum design. The improved phenomenological model developed by authors was used in an analysis to simulate the interaction of the electrostatic field, the ionized particles and the fluid flow. A design software was used to estimate the harvested power of the real 3D blade.... 

    On optimum impedance pattern for accurate wideband noise parameter characterization

    , Article International Journal of RF and Microwave Computer-Aided Engineering ; Volume 31, Issue 5 , 2021 ; 10964290 (ISSN) Rahmati, M. M ; Banai, A ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    At least four source impedances are required to characterize the noise parameters of a two-port network. The accuracy of the noise parameters depends on the configuration of the employed source impedances (pattern). The configuration of a specified pattern, generated generally by an impedance tuner, changes with frequency, and as such, the accuracy is usually degraded in a wideband characterization. To realize a low-error wideband noise characterization, the present article thoroughly investigates the method of choosing a four-source impedance pattern. A Monte Carlo simulation-based approach is proposed to obtain the desired impedance patterns. The measurement and simulation results show... 

    Numerical analysis of two-phase flow in heterogeneous porous media during pre-flush stage of matrix acidizing: Optimization by response surface methodology

    , Article Physics of Fluids ; Volume 33, Issue 5 , 2021 ; 10706631 (ISSN) Sabooniha, E ; Rokhforouz, M. R ; Kazemi, A ; Ayatollahi, S ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    Oil trapping behavior during the pre-flush stage is critically important to evaluate the effectiveness of matrix acidizing for the oil well stimulation. In this study, the visco-capillary behavior of the two-phase flow in the pore-scale is analyzed to investigate the influence of wetting properties for a natural rock sample. A two-dimensional model, based on Cahn-Hilliard phase-field and Navier-Stokes equations, was established and solved using the finite element method. A stability phase diagram for log capillary number (Ca)-log viscosity ratio (M) was constructed and then compared with the reported experimental works. The maximum and minimum ranges of capillary number and viscosity ratio... 

    An experimental investigation into the melting of phase change material using Fe3O4 magnetic nanoparticles under magnetic field

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 146, Issue 1 , 2021 , Pages 381-392 ; 13886150 (ISSN) Safaee Sadegh, S ; Aghababaei, A ; Mohammadi, O ; Jafari Mosleh, H ; Shafii, M. B ; Ahmadi, M. H ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    The low thermal conductivity of phase change materials has resulted in prolonged melting and freezing processes (charge and discharge) in these materials. This problem has limited the application of these materials in the field of thermal energy storage. In the present study, the effects of adding Fe3O4 magnetic nanoparticles at various concentrations as well as applying the magnetic field on the melting process of paraffin as phase change material have been experimentally studied. Thereupon, a cubic chamber in which the left wall applied a constant heat flux was used. At the optimum concentration of nanoparticles (1 mass%), the constant magnetic field with the intensities of 0.01 T and... 

    Human olfactory mucosa stem cells delivery using a collagen hydrogel: As a potential candidate for bone tissue engineering

    , Article Materials ; Volume 14, Issue 14 , 2021 ; 19961944 (ISSN) Simorgh, S ; Milan, P. B ; Saadatmand, M ; Bagher, Z ; Gholipourmalekabadi, M ; Alizadeh, R ; Hivechi, A ; Arabpour, Z ; Hamidi, M ; Delattre, C ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    For bone tissue engineering, stem cell‐based therapy has become a promising option. Re-cently, cell transplantation supported by polymeric carriers has been increasingly evaluated. Herein, we encapsulated human olfactory ectomesenchymal stem cells (OE‐MSC) in the collagen hydrogel system, and their osteogenic potential was assessed in vitro and in vivo conditions. Col-lagen type I was composed of four different concentrations of (4 mg/mL, 5 mg/mL, 6 mg/mL, 7 mg/mL). SDS‐Page, FTIR, rheologic test, resazurin assay, live/dead assay, and SEM were used to characterize collagen hydrogels. OE‐MSCs encapsulated in the optimum concentration of collagen hydrogel and transplanted in rat calvarial... 

    Fabrication of a sensitive colorimetric nanosensor for determination of cysteine in human serum and urine samples based on magnetic-sulfur, nitrogen graphene quantum dots as a selective platform and Au nanoparticles

    , Article Talanta ; Volume 226 , 2021 ; 00399140 (ISSN) Afsharipour, R ; Dadfarnia, S ; Haji Shabani, A. M ; Kazemi, E ; Pedrini, A ; Verucchi, R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A novel colorimetric nanosensor is reported for the selective and sensitive determination of cysteine using magnetic-sulfur, nitrogen graphene quantum dots (Fe3O4/S, N-GQDs), and gold nanoparticles (Au NPs). Thus, S, N-GQDs was firstly immobilized on Fe3O4 nanoparticles through its magnetization in the presence of Fe3+ in the alkali solution. The prepared Fe3O4/S, N-GQDs were dispersed in cysteine solution resulting in its quick adsorption on the surface of the Fe3O4/S, N-GQDs through hydrogen bonding interaction. Then, Au NPs solution was added to this mixture that after a short time, the color of Au NPs changed from red to blue, the intensity of surface plasmon resonance peak of Au NPs at... 

    Fabrication of a sensitive colorimetric nanosensor for determination of cysteine in human serum and urine samples based on magnetic-sulfur, nitrogen graphene quantum dots as a selective platform and Au nanoparticles

    , Article Talanta ; Volume 226 , 2021 ; 00399140 (ISSN) Afsharipour, R ; Dadfarnia, S ; Haji Shabani, A. M ; Kazemi, E ; Pedrini, A ; Verucchi, R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A novel colorimetric nanosensor is reported for the selective and sensitive determination of cysteine using magnetic-sulfur, nitrogen graphene quantum dots (Fe3O4/S, N-GQDs), and gold nanoparticles (Au NPs). Thus, S, N-GQDs was firstly immobilized on Fe3O4 nanoparticles through its magnetization in the presence of Fe3+ in the alkali solution. The prepared Fe3O4/S, N-GQDs were dispersed in cysteine solution resulting in its quick adsorption on the surface of the Fe3O4/S, N-GQDs through hydrogen bonding interaction. Then, Au NPs solution was added to this mixture that after a short time, the color of Au NPs changed from red to blue, the intensity of surface plasmon resonance peak of Au NPs at... 

    Physico-mechanical properties and micromorphology of AAS mortars containing copper slag as fine aggregate at elevated temperature

    , Article Journal of Building Engineering ; Volume 39 , 2021 ; 23527102 (ISSN) Ameri, F ; Shoaei, P ; Zahedi, M ; Karimzadeh, M ; Musaeei, H. R ; Cheah, C. B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Copper slag (CS) is an industrial by-product, which is commonly disposed in engineered landfills. Prior studies have successfully incorporated CS as an aggregate phase in cementitious materials. However, the alkali-activated material (AAM) incorporating CS has been scarcely studied. Specifically, the elevated temperature behavior of AAM with CS has not been investigated previously. The present paper aims to study the effects of elevated temperature treatment on the mass loss and residual strength of alkali-activated slag mortars incorporating 0–100% (by volume) of CS with an incremental step of 20% instead of natural sand. The mass loss, compressive and flexural strengths, and microstructure... 

    Use of linear amplitude sweep test as a damage tolerance or fracture test to determine the optimum content of asphalt rejuvenator

    , Article Construction and Building Materials ; Volume 300 , 2021 ; 09500618 (ISSN) Asadi, B ; Tabatabaee, N ; Hajj, R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A procedure based on the linear amplitude sweep (LAS) test has been developed to determine the optimum rejuvenator content for restoring the properties of aged asphalt binders. The LAS test was employed to assess the damage tolerance, fatigue resistance, and fracture behavior of rejuvenated aged binders. In case of fracture analysis, a crack-based indicator to govern the stable crack propagation was defined to characterize fracture resistance of asphalt binders. While rejuvenators improved all of these properties, higher contents were required to restore the cracking behavior of the original binder. The linear relationship between the integrated damage-fatigue-fracture indicator and... 

    Al-doped Li7La3Zr2O12 garnet-type solid electrolytes for solid-state Li-Ion batteries

    , Article Journal of Materials Science: Materials in Electronics ; Volume 32, Issue 5 , 2021 , Pages 6369-6378 ; 09574522 (ISSN) Ashuri, M ; Golmohammad, M ; Soleimany Mehranjani, A. R ; Faghihi Sani, M ; Sharif University of Technology
    Springer  2021
    Abstract
    Cubic phase Li7La3Zr2O12 (LLZO) is a promising solid electrolyte for next-generation Li-ion batteries. In this work, the combustion sol–gel technique is used to prepare an Al-doped LLZO solid electrolyte. The crystal structure is investigated, and the cubic phase is confirmed. Densification properties were investigated using SEM and optical dilatometry. The densification of the Al-doped sample takes place in two stages through two different shrinkage rates. Using 0.25 mol Al-dopant 94% relative density is achieved at 1100 °C. The effect of Al-doping on electrochemical properties is investigated in detail using AC impedance spectroscopy. The result indicates that the optimum concentration of...