Loading...
Search for: optimum-concentration
0.012 seconds

    The impacts of utilizing nano-encapsulated PCM along with RGO nanosheets in a pulsating heat pipe, a comparative study

    , Article International Journal of Energy Research ; Volume 45, Issue 13 , 2021 , Pages 19481-19499 ; 0363907X (ISSN) Mohammadi, O ; Shafii, M. B ; Rezaee Shirin Abadi, A ; Heydarian, R ; Ahmadi, M. H ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    Heat pipes are useful devices in heat transfer and particularly, in cooling systems. Given the high demand for cooling systems in various applications, an improvement in the performance of heat pipes has gained much attraction in recent years. In this study, the effects of utilizing working fluids with different thermal properties on the performance of pulsating heat pipes (PHP) are experimentally studied. Hence, nano-encapsulated phase change material (NPCM), reduced graphene oxide nanosheets, and their mixture, as a novel hybrid nanofluid, are prepared and dispersed in water as a working fluid. NPCM at 3 concentrations of 5, 10, and 20 g/L, as well as nanosheets at three concentrations of... 

    Preparation of stable dispersion of graphene using copolymers: dispersity and aromaticity analysis

    , Article Soft Materials ; Volume 17, Issue 2 , 2019 , Pages 190-202 ; 1539445X (ISSN) Qamar, S ; Yasin, S ; Ramzan, N ; Iqbal, T ; Akhtar, M. N ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this study, effectiveness of non-ionic block copolymers such as Lugalvan BNO12 and Triton X series (Triton X100 & Triton X405) has been reported for graphene dispersion in aqueous solutions. Stability of the aqueous graphene dispersions is investigated using UV–visible spectroscopy, Rheological, and Conductivity studies. Adsorption isotherms are constructed to determine the amount of polymers adsorbed on the surface of graphene by the spectroscopic analysis. Lugalvan BNO12 has been found to be adsorbed in higher amounts on the graphene surface compared to the Triton X series polymers. Thermogravimetric analysis (TGA) and Fourier Transform Infrared (FTIR) Spectroscopy investigations... 

    Investigation of the impact of synthesized hydrophobic magnetite nanoparticles on mass transfer and hydrodynamics of stagnant and stirred liquid–liquid extraction systems

    , Article Chemical Engineering Research and Design ; Volume 147 , 2019 , Pages 305-318 ; 02638762 (ISSN) Hatami, A ; Azizi, Z ; Bastani, D ; Sharif University of Technology
    Institution of Chemical Engineers  2019
    Abstract
    The impact of modified magnetite nanoparticles (MMNPs)on hydrodynamics and mass transfer in liquid–liquid extraction process was assessed using a ternary chemical system of toluene-acetic acid–water. The organic phase which contained toluene and acetic acid was dispersed through water, and the mass transfer of acetic acid between two phases was investigated. The hydrophobic modified magnetite nanoparticles (MMNPs)prepared through an optimized in-situ method were added to the dispersed phase at different concentrations (0.001−0.005 wt%). Two separate conditions were provided in the experiments, i.e. stagnant and stirred continuous phase. The latter case was provided by a rotor at two... 

    Investigation of 2-nitrophenol solar degradation in the simultaneous presence of K2S2O8 and H2O2: Using experimental design and artificial neural network

    , Article Journal of Cleaner Production ; Volume 176 , 2018 , Pages 1154-1162 ; 09596526 (ISSN) Bararpour, S. T ; Feylizadeh, M. R ; Delparish, A ; Qanbarzadeh, M ; Raeiszadeh, M ; Feilizadeh, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, the interaction effect of K2S2O8 (PDS) and H2O2 (as two powerful oxidants) was investigated on the solar degradation of 2-nitrophenol (2-NF) in the two systems, i.e. absence and presence of Ag/S/TiO2 photocatalyst. Experiments were designed based on the central composite design, and two methods of response surface methodology (RSM) and artificial neural network (ANN) were developed for modeling of the systems. Concentrations of PDS and H2O2 were considered as independent variables and 2-NF degradation efficiency was selected as the response. It was revealed that the predictive capacity of ANN model is more than RSM model according to their corresponding R2, R2 adj RMS, MAE,... 

    Influence of monoethanolamine on thermal stability of starch in water based drilling fluid system

    , Article Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development ; Volume 45, Issue 1 , 2018 , Pages 157-160 ; 10000747 (ISSN) Nasiri, A ; Sharif Nik, M. A ; Heidari, H ; Valizadeh, M ; Sharif University of Technology
    Science Press  2018
    Abstract
    To improve the thermal stability of starch in water-based drilling fluid, monoethanolamine (MEA) was added, and the effect was investigated by laboratory experiment. The experimental results show that the addition of monoethanolamine (MEA) increases the apparent viscosity, plastic viscosity, dynamic shear force, and static shear force of the drilling fluid, and reduces the filtration rate of drilling fluid and thickness of mud cake apparently. By creating hydrogen bonds with starch polymer, the monoethanolamine can prevent hydrolysis of starch at high temperature. Starch, as a natural polymer, is able to improve the rheological properties and reduce filtration of drilling fluid, but it works... 

    Improvement of non-aqueous colloidal gas aphron-based drilling fluids properties: role of hydrophobic nanoparticles

    , Article Journal of Natural Gas Science and Engineering ; Volume 42 , 2017 , Pages 1-12 ; 18755100 (ISSN) Hassani, A. H ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    Application of the colloidal gas aphrons (CGAs) in minimizing formation damage by plugging pore mechanism is now wildly accepted due to numerous successful field experience. One of the pivotal factors which affects the pore blockage ability of micro-bubbles is their stability. This experimental study tries to investigate the possible synergistic effect of nanoparticles on improving the stability and other properties of non-aqueous CGA drilling fluids, in both bulk and porous media. In particular, two types of hydrophobic nanoparticles including silicon dioxide nanopowder coated with 2 wt% Silane and nanoclay, in presence of a treated version of bentonite (Bentone 34) as a stabilizer and... 

    Human olfactory mucosa stem cells delivery using a collagen hydrogel: As a potential candidate for bone tissue engineering

    , Article Materials ; Volume 14, Issue 14 , 2021 ; 19961944 (ISSN) Simorgh, S ; Milan, P. B ; Saadatmand, M ; Bagher, Z ; Gholipourmalekabadi, M ; Alizadeh, R ; Hivechi, A ; Arabpour, Z ; Hamidi, M ; Delattre, C ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    For bone tissue engineering, stem cell‐based therapy has become a promising option. Re-cently, cell transplantation supported by polymeric carriers has been increasingly evaluated. Herein, we encapsulated human olfactory ectomesenchymal stem cells (OE‐MSC) in the collagen hydrogel system, and their osteogenic potential was assessed in vitro and in vivo conditions. Col-lagen type I was composed of four different concentrations of (4 mg/mL, 5 mg/mL, 6 mg/mL, 7 mg/mL). SDS‐Page, FTIR, rheologic test, resazurin assay, live/dead assay, and SEM were used to characterize collagen hydrogels. OE‐MSCs encapsulated in the optimum concentration of collagen hydrogel and transplanted in rat calvarial... 

    Ferrofluidic open loop pulsating heat pipes: Efficient candidates for thermal management of electronics

    , Article Experimental Heat Transfer ; Vol. 27, issue. 3 , Dec , 2014 , p. 296-312 ; ISSN: 08916152 Mohammadi, M ; Taslimifar, M ; Saidi, M. H ; Shafii, M. B ; Afshin, H ; Hannani, S. K ; Sharif University of Technology
    Abstract
    Thermal management of electronic devices is presently a serious concern. This article investigates the thermal performance of a five-turn open-loop pulsating heat pipe in both start-up and steady thermal conditions. The effects of working fluid, namely water and ferrofluid, heat input, charging ratio, ferrofluid concentration, orientation, as well as application of magnetic field, are explored. Experimental results show that using ferrofluid enhances the thermal performance in comparison with the case of distilled water under certain conditions. In addition, applying a magnetic field on the open-loop pulsating heat pipe charged with ferrofluid improves its thermal performance. Charging... 

    Experimental investigation of paraffin nano-encapsulated phase change material on heat transfer enhancement of pulsating heat pipe

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 137, Issue 5 , 2019 , Pages 1603-1613 ; 13886150 (ISSN) Heydarian, R ; Shafii, M. B ; Rezaee Shirin Abadi, A ; Ghasempour, R ; Alhuyi Nazari, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In this study, a mixture of nano-encapsulated phase change materials in water has been used as the working fluid in a pulsating heat pipe in order to investigate its thermal performance. The results of the experiments showed that using the nano-encapsulated paraffin dispersed in water as working fluid improves heat transfer and decreases the thermal resistance of the pulsating heat pipe. On the other hand, among the tested concentrations for nano-encapsulated paraffin, there is an optimal value in which increasing the concentration causes an increase in the thermal resistance of the pulsating heat pipe due to the increased dynamic viscosity of the fluid. Enhancement in the thermal... 

    Effect of time and temperature on crude oil aging to do a right surfactant flooding with a new approach

    , Article Proceedings of the Annual Offshore Technology Conference ; Vol. 2, issue , 2014 , p. 1136-1142 ; ISSN: 01603663 ; ISBN: 9781632663870 Heidari, M. A ; Habibi, A ; Ayatollahi, S ; Masihi, M ; Ashoorian, S ; Sharif University of Technology
    Abstract
    Dilute Surfactant flooding has been recognized as one of the significant processes in chemical flooding. Many oil reservoirs became appropriate candidates for surfactant/water flooding when screening criteria was developed. Injected surfactant tried to mobilize the residual oil that was trapped in interstice. The main contributing mechanism to enhance oil recovery by surfactant flooding was defined as rock wettability alteration. Wettability is one of the substantial parameters to choose the best approach for a successful surfactant flooding in which tiny change in wettability will lead to improve oil recovery fundamentally. In this experimental study the effect of different aging time and... 

    Clay-based electrospun nanofibrous membranes for colored wastewater treatment

    , Article Applied Clay Science ; Volume 168 , 2019 , Pages 77-86 ; 01691317 (ISSN) Hosseini, S. A ; Vossoughi, M ; Mahmoodi, N. M ; Sadrzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Novel montmorillonite (Mt) chitosan/poly(vinyl alcohol) (PVA) nanocomposite electrospun nanofibrous membranes (ENM) were prepared and utilized for the treatment of colored wastewater. The Mt. with different mass percentages (0, 1.0, 2.0 and 3.0 mass%) was added to the membrane structure, and its effect on morphology, pore size, porosity, mechanical strength, and permeation properties of ENM were investigated. The fabricated membranes were used as affinity membranes for dye removal with ultrafast permeating adsorption. The results showed that incorporating Mt. as a reinforcing agent improved the nanocomposite ENM resistance to compaction. Young's modulus for the prepared membranes increased... 

    Appraising the impacts of SiO2, ZnO and TiO2 nanoparticles on rheological properties and shale inhibition of water-based drilling muds

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 581 , 2019 ; 09277757 (ISSN) Esfandyari Bayat, A ; Shams, R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In recent decades, utilizing of water-based muds (WBMs) in drilling oil and gas wells is ever increasing comparing to oil-based muds and synthetic-based muds due to the lower environmental issues. However, the main drawbacks with WBMs are rheological properties inefficiency and shale swelling which have caused attentions turn to improvement of WBMs’ rheological properties. In this study, the effects of various nanoparticles (NPs) namely titanium dioxide (TiO2), silicon dioxide (SiO2), and zinc oxide (ZnO) on improving rheological properties and shale recovery rate of a WBM sample at two temperatures (25 and 50 °C) were investigated. The concentrations of NPs in the base mud were set at 0.01,... 

    A novel superhydrophilic/superoleophobic nanocomposite PDMS-NH2/PFONa-SiO2 coated-mesh for the highly efficient and durable separation of oil and water

    , Article Surface and Coatings Technology ; Volume 394 , 2020 Amirpoor, S ; Siavash Moakhar, R ; Dolati, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A surface to separate oil–water mixtures is a global concern and highly needed particularly in oil industries. The present study was conducted to create a novel superhydrophilic/superoleophobic nanocomposite coating on the stainless-steel mesh for the aim of oil/water separation. Different hydrophilic resins along with PFOA as oleophobic agent with 15 flours in its chemical structure and various oxide nanoparticles containing SiO2 and TiO2 at different concentrations were studied to achieve superhydrophilic/superoleophobic surface. The fabricated nanocomposites were fully characterized via field-emission scanning microscopy (FESEM), atomic force microscopy (AFM) and Fourier-transform... 

    An experimental investigation into the melting of phase change material using Fe3O4 magnetic nanoparticles under magnetic field

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 146, Issue 1 , 2021 , Pages 381-392 ; 13886150 (ISSN) Safaee Sadegh, S ; Aghababaei, A ; Mohammadi, O ; Jafari Mosleh, H ; Shafii, M. B ; Ahmadi, M. H ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    The low thermal conductivity of phase change materials has resulted in prolonged melting and freezing processes (charge and discharge) in these materials. This problem has limited the application of these materials in the field of thermal energy storage. In the present study, the effects of adding Fe3O4 magnetic nanoparticles at various concentrations as well as applying the magnetic field on the melting process of paraffin as phase change material have been experimentally studied. Thereupon, a cubic chamber in which the left wall applied a constant heat flux was used. At the optimum concentration of nanoparticles (1 mass%), the constant magnetic field with the intensities of 0.01 T and... 

    Al-doped Li7La3Zr2O12 garnet-type solid electrolytes for solid-state Li-Ion batteries

    , Article Journal of Materials Science: Materials in Electronics ; Volume 32, Issue 5 , 2021 , Pages 6369-6378 ; 09574522 (ISSN) Ashuri, M ; Golmohammad, M ; Soleimany Mehranjani, A. R ; Faghihi Sani, M ; Sharif University of Technology
    Springer  2021
    Abstract
    Cubic phase Li7La3Zr2O12 (LLZO) is a promising solid electrolyte for next-generation Li-ion batteries. In this work, the combustion sol–gel technique is used to prepare an Al-doped LLZO solid electrolyte. The crystal structure is investigated, and the cubic phase is confirmed. Densification properties were investigated using SEM and optical dilatometry. The densification of the Al-doped sample takes place in two stages through two different shrinkage rates. Using 0.25 mol Al-dopant 94% relative density is achieved at 1100 °C. The effect of Al-doping on electrochemical properties is investigated in detail using AC impedance spectroscopy. The result indicates that the optimum concentration of...