Loading...
Search for: organic-acids
0.014 seconds
Total 89 records

    Graphene nanomesh promises extremely efficient in vivo photothermal therapy

    , Article Small ; Volume 9, Issue 21 , 2013 , Pages 3593-3601 ; 16136810 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2013
    Abstract
    Reduced graphene oxide nanomesh (rGONM), as one of the recent structures of graphene with a surprisingly strong near-infrared (NIR) absorption, is used for achieving ultraefficient photothermal therapy. First, by using TiO2 nanoparticles, graphene oxide nanoplatelets (GONPs) are transformed into GONMs through photocatalytic degradation. Then rGONMs functionalized by polyethylene glycol (PEG), arginine-glycine-aspartic acid (RGD)-based peptide, and cyanine 7 (Cy7) are utilized for in vivo tumor targeting and fluorescence imaging of human glioblastoma U87MG tumors having ανβ3 integrin receptors, in mouse models. The rGONM-PEG suspension (1 μg mL -1) exhibits about 4.2- and 22.4-fold higher NIR... 

    Thorough tuning of the aspect ratio of gold nanorods using response surface methodology

    , Article Analytica Chimica Acta ; Volume 779 , 2013 , Pages 14-21 ; 00032670 (ISSN) Hormozi Nezhad, M. R ; Robatjazi, H ; Jalali Heravi, M ; Sharif University of Technology
    2013
    Abstract
    In the present work a central composite design based on response surface methodology (RSM) is employed for fine tuning of the aspect ratios of seed-mediated synthesized gold nanorods (GNRs). The relations between the affecting parameters, including ratio of l-ascorbic acid to Au3+ ions, concentrations of silver nitrate, CTAB, and CTAB-capped gold seeds, were explored using a RSM model. It is observed that the effect of each parameter on the aspect ratio of developing nanorods highly depends on the value of the other parameters. The concentrations of silver ions, ascorbic acid and seeds are found to have a high contribution in controlling the aspect ratios of NRs. The optimized parameters led... 

    Interactions of coinage metal clusters with histidine and their effects on histidine acidity; Theoretical investigation

    , Article Organic and Biomolecular Chemistry ; Volume 10, Issue 47 , Oct , 2012 , Pages 9373-9382 ; 14770520 (ISSN) Javan, M. J ; Jamshidi, Z ; Tehrani, Z. A ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    Understanding the nature of interaction between metal nanoparticles and biomolecules such as amino acids is important in the development and design of biosensors. In this paper, binding of M3 clusters (M = Au, Ag and Cu) with neutral and anionic forms of histidine amino acid was studied using density functional theory (DFT-B3LYP). It was found that the interaction of histidine with M3 clusters is governed by two major bonding factors: (a) the anchoring N-M and O-M bonds and (b) the nonconventional N-H⋯M and O-H⋯M hydrogen bonds. The nature of these chemical bonds has been investigated based on quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. In the next... 

    What roles do boron substitutions play in structural, tautomeric, base pairing and electronic properties of uracil? NBO & AIM analysis

    , Article Journal of Physical Organic Chemistry ; Volume 25, Issue 9 , 2012 , Pages 787-796 ; 08943230 (ISSN) AliakbarTehrani, Z ; Abedin, A ; Shakourian Fard, M ; Fattahi, A ; Sharif University of Technology
    Wiley  2012
    Abstract
    The synthesis of modified versions of deoxyribonucleic acid is an area that is receiving much attention. The replacement of the nitrogen atom on the nucleobases with boron atom has provided insight into deoxyribonucleic acid and ribonucleic acid stability, recognition, and replication at the atomic level. In the present research, we investigated a detailed density functional theory study of the structural, tautomeric, base-pairing ability, bond dissociation energy, and electronic properties of two boron analogues (i.e., boron substitutions at 4-position and 5-position of uracil) of uracil nucleobase. The effects of these modifications on theirs acid-base properties have been considered. Our... 

    Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions

    , Article Biochemical Engineering Journal ; Volume 67 , 2012 , Pages 208-217 ; 1369703X (ISSN) Amiri, F ; Mousavi, S. M ; Yaghmaei, S ; Barati, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    The kinetics of bioleaching of Mo, Ni, and Al from spent hydrocracking catalyst, using Aspergillus niger was studied. The four most effective bioleaching variables were selected in accordance with the Plackett-Burman design and were further optimized via central composite design (CCD). The optimal values of the variables for maximum multi-metal bioleaching were as follows: particle size 150-212. μm, sucrose 93.8. g/L, pulp density 3%. w/v, and pH 7. The maximum metal recoveries corresponding to these conditions were 99.5 ± 0.4% Mo, 45.8 ± 1.2% Ni, and 13.9 ± 0.1% Al. The relatively low Ni extraction was attributed to the precipitation of Ni in the presence of oxalic acid. Under the optimal... 

    Enhanced electricity generation from whey wastewater using combinational cathodic electron acceptor in a two-chamber microbial fuel cell

    , Article International Journal of Environmental Science and Technology ; Volume 9, Issue 3 , 2012 , Pages 473-478 ; 17351472 (ISSN) Nasirahmadi, S ; Safekordi, A. A ; Sharif University of Technology
    2012
    Abstract
    While energy consumption is increasing worldwide due to population growth, the fossil fuels are unstable and exhaustible resources for establishing sustainable life. Using biodegradable compounds present in the wastewater produced in industrial process as a renewable source is an enchanting approach followed by scientists for maintaining a sustainable energy production to vanquish this problem for ulterior generations. In this research, bioelectricity generation with whey degradation was investigated in a two-chamber microbial fuel cell with humic acid as anodic electron mediator and a cathode compartment including combinational electron acceptor. Escherichia coli was able to use the... 

    Controlling aspect ratio of colloidal silver nanorods using response surface methodology

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 393 , 2012 , Pages 46-52 ; 09277757 (ISSN) Hormozi Nezhad, M. R ; Jalali Heravi, M ; Robatjazi, H ; Ebrahimi Najafabadi, H ; Sharif University of Technology
    2012
    Abstract
    The properties of metallic nanorods vary due to changes in their composition, size and shape, which all depend on the aspect ratio of the nanorods. This work focuses on the optimization of the aspect ratio of silver nanorods using response surface methodology (RSM). Seed-mediated approach, which is the newest method with less difficulty, has been used for the synthesis of silver nanorods. First, silver ions were reduced with sodium borohydride in the presence of sodium citrate dehydrate, as stabilizer. Then, the prepared seeds were added to a solution containing more metal salts, a weak reducing agent (ascorbic acid) and a rod-like micellar template (cetyltrimethylammonium bromide, CTAB).... 

    Electrochemical preparation of over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application in epinephrine determination

    , Article Electrochimica Acta ; Volume 57, Issue 1 , 2011 , Pages 132-138 ; 00134686 (ISSN) Shahrokhian, S ; Saberi, R. S ; Sharif University of Technology
    Abstract
    A composite film constructed of surfactant doped over-oxidized polypyrrole and multi-walled carbon nanotube was prepared on the surface of glassy carbon electrode by the electro-polymerization method. Surface characterization of the modified electrode was performed by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectrometry. The investigations have been proved that the over-oxidation of the modifier film resulted in a porous thin layer that improves the interlayer diffusion mechanism for the electroactive species. On the other hand, the negative charge density on the surface of the electrode excludes the negative analytes (e.g. ascorbate and Fe(CN)63?/4?)... 

    Catalytic activity of TiO 2 nanotubes modified with carbon and Pt nanoparticles for detection of dopamine

    , Article ECS Transactions ; Volume 35, Issue 35 , 2011 , Pages 53-62 ; 19385862 (ISSN) ; 9781607682950 (ISBN) Mahshid, S ; Mahshid, S. S ; Ghahremaninezhad, A ; Askari, M ; Dolati, A ; Yang, L ; Luo, Sh ; Cai, Q ; Sensor; Organic and Biological Electrochemistry ; Sharif University of Technology
    2011
    Abstract
    Catalytic activity of carbon/Pt nanoparticles modified TiO 2 nanotubes electrode was studied by using dopamine contained solutions. The TiO 2 nanotubes electrode was prepared using anodizing method in aqueous solution. The electrochemical pulse method was then applied for electrodeposition of Pt nanoparticles onto the TiO 2 nanotubes. Further modification was achieved by decomposition of polyethylene glycol in a tube furnace to have a carbon/Pt nanoparticles modified TiO 2 nanotubes electrode. The final modified electrode could successfully detect the electro-oxidation of dopamine in a ImM contained solution using cyclic voltametry method. Also, a high sensitivity towards the oxidation of... 

    Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation

    , Article Electrochimica Acta ; Volume 58, Issue 1 , 2011 , Pages 551-555 ; 00134686 (ISSN) Mahshid, S. S ; Mahshid, S ; Dolati, A ; Ghorbani, M ; Yang, L ; Luo, S ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    An electro-catalysis non-enzymatic electrode is proposed based on alloyed Pt/Ni nanowire arrays (NWAs) for the detection of glucose. The Pt/Ni NWAs were prepared by pulse electrodeposition of Pt and Ni within a nano-pore polycarbonate (PC) membrane followed by a chemical etching of the membrane. The electrode structure is characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resulting Pt/Ni NWAs electrode shows high electrocatalytic activities towards the oxidation of glucose in alkaline solution. Consequently, a sensitive amperometric detection of glucose is achieved under 0.45 V vs. SCE with a low detection limit of 1.5 μM within a wide linear... 

    Carbon-Pt nanoparticles modified TiO 2 nanotubes for simultaneous detection of dopamine and uric acid

    , Article Journal of Nanoscience and Nanotechnology ; Volume 11, Issue 8 , 2011 , Pages 6668-6675 ; 15334880 (ISSN) Mahshid, S ; Luo, S ; Yang, L ; Mahshid, S. S ; Askari, M ; Dolati, A ; Cai, Q ; Sharif University of Technology
    Abstract
    The present work describes sensing application of modified TiO 2 nanotubes having carbon-Pt nanoparticles for simultaneous detection of dopamine and uric acid. The TiO 2 nanotubes electrode was prepared using anodizing method, followed by electrodeposition of Pt nanoparticles onto the tubes. Carbon was deposited by decomposition of polyethylene glycol in a tube furnace to improve the conductivity. The C-Pt-TiO 2 nanotubes modified electrode was characterized by cyclic voltam-metry and differential pulse voltammetry methods. The modified electrode displayed high sensitivity towards the oxidation of dopamine and uric acid in a phosphate buffer solution (pH 7.00). The electro-oxidation currents... 

    Electrocatalytic determination of sumatriptan on the surface of carbon-paste electrode modified with a composite of cobalt/Schiff-base complex and carbon nanotube

    , Article Bioelectrochemistry ; Volume 81, Issue 2 , 2011 , Pages 81-85 ; 15675394 (ISSN) Amiri, M ; Pakdel, Z ; Bezaatpour, A ; Shahrokhian, S ; Sharif University of Technology
    2011
    Abstract
    The electrochemical oxidation of sumatriptan on the surface of carbon paste electrode modified with multi-walled carbon nanotube and cobalt methyl-salophen complex is studied by using cyclic voltammetry and polarization studies. The results indicate that the drug is irreversibly oxidized in a one electron oxidation mechanism. It was found that the peak potential shifted negatively with increasing pH, confirms that H + participate in the oxidation process. The electrode is shown to be very effective for the detection of sumatriptan in the presence of other biological reductant compounds. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of... 

    Fungal leaching of hazardous heavy metals from a spent hydrotreating catalyst

    , Article World Academy of Science, Engineering and Technology ; Volume 76 , 2011 , Pages 726-731 ; 2010376X (ISSN) Gholami, R. M ; Borghei, S. M ; Mousavi, S. M ; Sharif University of Technology
    Abstract
    In this study, the ability of Aspergillus niger and Penicillium simplicissimum to extract heavy metals from a spent refinery catalyst was investigated. For the first step, a spent processing catalyst from one of the oil refineries in Iran was physically and chemically characterized. Aspergillus niger and Penicillium simplicissimum were used to mobilize Al/Co/Mo/Ni from hazardous spent catalysts. The fungi were adapted to the mixture of metals at 100-800 mg L -1 with increments in concentration of 100 mg L -1. Bioleaching experiments were carried out in batch cultures. To investigate the production of organic acids in sucrose medium, analyses of the culture medium by HPLC were performed at... 

    In situ forming interpenetrating hydrogels of hyaluronic acid hybridized with iron oxide nanoparticles

    , Article Biomaterials Science ; Volume 3, Issue 11 , Aug , 2015 , Pages 1466-1474 ; 20474830 (ISSN) Kheirabadi, M ; Shi, L ; Bagheri, R ; Kabiri, K ; Hilborn, J ; Ossipov, D. A ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Four derivatives of hyaluronic acid (HA) bearing thiol (HA-SH), hydrazide (HA-hy), 2-dithiopyridyl (HA-SSPy), and aldehyde groups (HA-al) respectively were synthesized. Thiol and 2-dithiopyridyl as well as hydrazide and aldehyde make up two chemically orthogonal pairs of chemo-selective functionalities that allow in situ formation of interpenetrating (IPN) disulfide and hydrazone networks simultaneously upon the mixing of the above derivatives at once. The formation of IPN was demonstrated by comparing it with the formulations of the same total HA concentration but lacking one of the reactive components. The hydrogel composed of all four components was characterized by a larger elastic... 

    Hydrogel nanocomposite based on chitosan-g-acrylic acid and modified nanosilica with high adsorption capacity for heavy metal ion removal

    , Article Iranian Polymer Journal (English Edition) ; Volume 24, Issue 9 , September , 2015 , Pages 725-734 ; 10261265 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Salimi, H ; Banazadeh, A ; Abedini, N ; Sharif University of Technology
    Springer-Verlag London Ltd  2015
    Abstract
    In this study, a novel hybrid hydrogel based on chitosan, acrylic acid and amine-functionalized nanosilica was prepared and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. This hydrogel nanocomposite was used for removal of Co2+, Cu2+, Pb2+ and Zn2+ ions from aqueous solution. The metal ion adsorption was measured by inductively coupled plasma mass spectrometry. The adsorption behavior showed that the presence of modified nanosilica enhanced the porosity of the hydrogel network and affected its adsorption capacity in response to different parameters such as nanosilica content, metal ion concentration, adsorbent content,... 

    Dendritic magnetite decorated by pH-responsive PEGylated starch: A smart multifunctional nanocarrier for the triggered release of anti-cancer drugs

    , Article RSC Advances ; Volume 5, Issue 60 , Jun , 2015 , Pages 48586-48595 ; 20462069 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Hosseini, S. H ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    In the present study, we designed a pH-responsive drug nanocarrier based on polyamidoamine-modified Fe3O4 nanoparticles coated by PEGylated starch-co-poly(acrylic acid). This carrier was used for the controlled release of doxorubicin as an anticancer drug model. The purpose of using the polyethylene glycol moiety is to generate a biostable nanocarrier in blood stream as it has been reported widely in the pharmaceutical literature. The use of a poly(acrylic acid) segment also provided pH-sensitivity to the polymer. Besides, the magnetic nanoparticles facilitate the cancer cell targeting with an external magnetic field located near the tumor site. This carrier was... 

    Application of pyrolytic graphite modified with nano-diamond/graphite film for simultaneous voltammetric determination of epinephrine and uric acid in the presence of ascorbic acid

    , Article Electrochimica Acta ; Volume 55, Issue 28 , 2010 , Pages 9090-9096 ; 00134686 (ISSN) Shahrokhian, S ; Khafaji, M ; Sharif University of Technology
    2010
    Abstract
    A novel modified pyrolytic graphite electrode with nano-diamond/graphite was fabricated. The electrochemical response characteristics of the modified electrode toward the epinephrine (EN) and uric acid (UA) were studied by means of cyclic and linear sweep voltammetry. The structural morphology and thickness of the film was characterized by SEM technique. The prepared electrode showed an excellent catalytic activity in the electrochemical oxidation of EN and UA, leading to remarkable enhancements in the corresponding peak currents and lowering the peak potentials. The prepared modified electrode acts as a highly sensitive sensor for simultaneous determination of EN and UA in the presence of... 

    A sensitive colorimetric detection of ascorbic acid in pharmaceutical products based on formation of anisotropic silver nanoparticles

    , Article Scientia Iranica ; Volume 17, Issue 2 F , 2010 , Pages 148-153 ; 10263098 (ISSN) Hormozi Nezhad, M. R ; Karimi, M. A ; Shahheydari, F ; Sharif University of Technology
    2010
    Abstract
    A sensitive colorimetric method for the detection of ascorbic acid was proposed in this research based on the reduction of silver ions by ascorbic acid in the presence of citrate-stabilized silver seeds, additional trisodium citrate and a polymer such as polyvinylpyrrolidone. The color of the stable sol is controlled by varying the concentration of trisodium citrate (TSC), polyvinylpyrrolidone, silver nitrate and silver seeds. The reduction of Ag + to triangle silver nanoparticles (Ag-NPs) by ascorbic acid in the presence of trisodium citrate (TSC) and silver seeds produced two very intense surface plasmon resonance peaks of Ag-NPs. The plasmon absorbance of Ag-NPs allows the quantitative... 

    Characterization of LiCoO2 nanopowders produced by sol-gel processing

    , Article Journal of Nanomaterials ; Volume 2010 , 2010 ; 16874110 (ISSN) Asgari, S ; Soltanmohammad, S ; Sharif University of Technology
    2010
    Abstract
    LiCoO2 nanopowders, one of the most important cathode materials for lithium-ion batteries, were synthesized via a modified sol-gel process assisted with triethanolamine (TEA) as a complexing agent. The influence of three different chelating agents including acrylic acid, citric acid, and oxalic acid on the size and morphology of particles was investigated. Structure and morphology of the synthesized powders were characterized by thermogravimetric/ differential thermal analyses (TG/DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Results indicate that the powder processed with TEA and calcinated at 800 °C had an excellent hexagonal ordering of α-NaFeO2 -type (space... 

    New smart carrageenan-based superabsorbent hydrogel hybrid: Investigation of swelling rate and environmental responsiveness

    , Article Journal of Applied Polymer Science ; Volume 117, Issue 6 , September , 2010 , Pages 3228-3238 ; 00218995 (ISSN) Salimi, H ; Pourjavadi, A ; Seidi, F ; Eftekhar Jahromi, P ; Soleyman, R ; Sharif University of Technology
    2010
    Abstract
    Synthesis of novel natural-based superabsorbents with improved properties is of prime importance in many applications. In this article we report an efficient synthesis of new polysaccharide-based superabsorbent hybrid composing carrageenan, acrylic acid, sodium acrylate, and 2-hydroxyethyl acrylate through homogenous solution polymerization process. Infrared spectroscopy and thermogravimetric analysis (TGA) were carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was examined by scanning electron microscopy (SEM). To deeper studies on the structure-property relation in SAP hydrogels, three hydrogels with different acrylic acid/2-hydroxyethyl...