Loading...
Search for: oxidation
0.01 seconds
Total 2313 records

    Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: a promising candidate for medical applications [electronic resource]

    , Article Nanotechnology ; February 2012, Vol. 23, No. 4, PP. 045102 Behzadi, S. (Shahed) ; Imani, Mohammad ; Yousefi, Mohammad ; Galinetto, Pietro ; Simchi, Abdolreza ; Amiri, Houshang ; Stroeve, Pieter ; Mahmoudi, Morteza ; Sharif University of Technology
    Abstract
    Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses  

    A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 75, Issue 1 , 1 January , 2010 , Pages 300–309 Mahmoudi, M. (Morteza) ; Simchi, A. (Abdolreza) ; Imani, M. (Mohammad) ; Shokrgozar, M. A. (Mohammad A.) ; Milani, A. S. (Abbas S.) ; Hafeli, Urs O ; Stroeve, Pieter ; Sharif University of Technology
    Abstract
    Superparamagnetic iron oxide nanoparticles (SPIONs) are increasingly used in medical applications, such as targeting delivery and imaging. In the future, patients are more likely to be exposed to pharmaceutical products containing such particles. The study of toxicity of SPIONs has become of great importance in recent years, although the published data in this arena is limited. The aim of the present work is to investigate the cytotoxicity of SPIONs and the effect of the particles on the cell medium components. For this purpose, uncoated and polyvinyl alcohol (PVA) coated SPIONs with narrow size distribution were synthesized via a well-known coprecipitation method. The mouse fibroblast cell... 

    Preparation and biological evaluation of [67 Ga]-labeled-superparamagnetic iron oxide nanoparticles in normal rats

    , Article Journal of Nuclear Science and Technology ; Volume 97, Issue 1 , September , 2009 , Pages 51–56 Jalilian, A. R ; Panahifar, A ; Mahmoudi, M. (Morteza) ; Akhlaghi, M. (Mahdi) ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    Gallium-67 labeled superparamagnetic iron oxide nanoparticles were prepared and evaluated for their altered biodistribution in normal rats. Superparamagnetic iron oxide nanoparticles with narrow size distribution were synthesized by co-precipitation technique using ferric and ferrous salts at molar ratio Fe3+/Fe2+=2:1 followed by structure identification using XRD, thermo gravimetric analysis , differential scanning calorimetric , vibrating sample magnetometer, high-resolution scanning electron microscopy,transmission electron microscopy and fourier transform infrared absorption techniques. In order to trace superparamagnetic iron oxide nanoparticles bio-distribution, the radiolabeled iron... 

    Fabrication of gas ionization sensor based on titanium oxide nanotube arrays

    , Article Applied Physics A ; Volume 115, Issue 4 , June , 2014 , pp 1387-1393 ; 1432-0630 Nikfarjam, A. (Alireza) ; Mohammadpour, R. (Raheleh) ; Iraji Zad, A. (Azam) ; Sharif University of Technology
    Abstract
    Gas sensors have been fabricated based on field ionization from titanium oxide nanotubes grown on titanium foil. Ordered nanaotube arrays of titanium oxides were grown by the anodization method. We measured breakdown voltages and discharge currents of the device for various gases. Our gas ionization sensors (GIS) presented good sensitivity, selectivity, and short response time. The GISs based on TiO2 nanotube arrays showed lower breakdown voltage, higher discharge current, and good selectivity. An excellent response observed for Ar compared to other gases. Besides, by introducing 2 % CO and 4 % H2 to N2 flow gas, the amount of breakdown voltage shifts about 20 and 70 volts to the lower... 

    H2S sensing properties of added copper oxide in WO3

    , Article Key Engineering Materials ; Volume 543 , March , 2013 , Pages 145-149 Nowrouzi, R. (Rasoul) ; Razi Astaraei, F. (Fatemeh) ; Kashani, Sh. (shima) ; Iraji Zad, A. (Azam) ; Sharif University of Technology
    Abstract
    We study Hydrogen sulfide gas detection properties of pure and 1% copper oxide added WO3 thin films. The spin coated deposits on alumina substrates were annealed at 500 C for 1 hour in order to improve the crystallinity of the films. The sensitivity of pure tungsten oxide is poor even at temperatures of about 100 C but the doped samples exhibit good response to H2S gas. Our data show sensitivity of about 1500 in 10 ppm diluted gas in air at 100 C. The films are sensitive to the gas even at 250 ppb (sensitivity about 2) H2S concentration at 100 C but with rather long recovery time. Crystal structure, morphology and chemical composition of samples were studied by X-Ray diffraction (XRD),... 

    Colloidal gold nanoparticles: an unexpected catalytic activity in aqueous phase with dioxygen

    , Article catalysis letters ; Volume 144, Issue 7 , July , 2014 , pp. 1219-1222 ; 1572-879X Salari, H. (Hadi) ; Robatjazi, H. (Hossein) ; Hormozi-Nezhad, M. (Mohammad Reza) ; Padervand, M. (Mohsen) ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    Selective oxidations of alkenes were investigated using molecular oxygen in aqueous solution under mild conditions. Colloidal gold nanoparticles are particularly versatile catalysts for oxidation reaction with exceptionally high efficiency and significant selectivity. Gold nanorods (Au NRs) exhibited a slightly enhanced activity compare to gold nanospheres  

    Pd-WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors

    , Article International Journal of Hydrogen Energy ; Volume 39, Issue 15 , 15 May , 2014 , Pages 8169–8179 Esfandiara, A. (Ali) ; Iraji Zada, A. (Azam) ; Akhavana, O. (Omid) ; Ghasemic, S. (Shahnaz) ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    Pd–WO3 nanostructures were incorporated on graphene oxide (GO) and partially reduced graphene oxide (PRGO) sheets using a controlled hydrothermal process to fabricate effective hydrogen gas sensors. Pd–WO3 nanostructures showed ribbon-like morphologies and Pd–WO3/GO presented an irregular nanostructured form, while Pd–WO3/PRGO exhibited a hierarchical nanostructure with a high surface area. Gas sensing properties of thin films of these materials were studied for different hydrogen concentrations (from 20 to 10,000 ppm) at various temperatures (from room temperature to 250 °C). Although adding GO in the Pd–WO3, after hydrothermal process could increase the film conductivity, gas sensitivity... 

    Ionic liquid/graphene oxide as a nanocomposite for improving the direct electrochemistry and electrocatalytic activity of glucose oxidase

    , Article Journal of Solid State Electrochemistry ; Vol. 17, Issue 1 , January , 2013 , pp 183-189 ; ISSN: 1432-8488 Tasviri, M (Mahboubeh) ; Ghasemi, S. (Shahnaz) ; Ghourchian, H. (Hedayatollah) ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    By combination of 1-ethyl-3-methyl immidazolium ethyl sulfate as a typical room temperature ionic liquid (IL) and graphene oxide (GO) nanosheets, a nanocomposite was introduced for improving the direct electrochemistry and electrocatalytic activity of glucose oxidase (GOx). The enzyme on the IL–GO-modified glassy carbon electrode exhibited a quasireversible cyclic voltammogram corresponding to the flavine adenine dinucleotide/FADH2 redox prosthetic group of GOx. At the scan rate of 100 mV s−1, the enzyme showed a peak-to-peak potential separation of 82 mV and the formal potential of −463 mV (vs Ag/AgCl in 0.1 M phosphate buffer solution, pH 7.0). The kinetic parameters of the charge transfer... 

    A novel iron complex containing an N,O-type bidentate oxazoline ligand: Synthesis, X-ray studies, DFT calculations and catalytic activity

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Vol. 133, issue , Jun , 2014 , p. 432-438 Amini, M ; Arab, A ; Derakhshandeh, P. G ; Bagherzadeh, M ; Ellern, A ; Woo, L. K ; Sharif University of Technology
    Abstract
    A five-coordinated Fe(III) complex with the distorted trigonal bipyramidal configuration was synthesized by reactions of FeCl36H2O and 2-(2′-hydroxyphenyl)oxazoline (Hphox) as a bidentate ON donor oxazoline ligand. Complex [Fe(phox)2Cl] was fully characterized, including by single-crystal X-ray structure analysis. DFT calculations were accompanied with experimental results in order to obtain a deeper insight into the electronic structure and vibrational normal modes of complex. Oxidation of sulfides to sulfoxides in one-step was conducted by this complex as catalyst using urea hydrogen peroxide (UHP) in mixture of CH2Cl 2/CH3OH (1:1) under air at room temperature. The results show that using... 

    In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures

    , Article Materials Science and Engineering C ; Vol. 45 , 2014 , pp. 196-204 ; ISSN: 09284931 Fazaeli, Y ; Akhavan, O ; Rahighi, R ; Aboudzadeh, M. R ; Karimi, E ; Afarideh, H ; Sharif University of Technology
    Abstract
    Graphene oxide (GO) sheets functionalized by aminopropylsilyl groups (8.0 wt.%) were labeled by 198,199Au nanoparticle radioisotopes (obtained through reduction of HAuCl4 in sodium citrate solution followed by thermal neutron irradiation) for fast in vivo targeting and SPECT imaging (high purity germanium-spectrometry) of tumors. Using instant thin layer chromatography method, the physicochemical properties of the amino-functionalized GO sheets labeled by 198,199Au NPs (198,199Au@AF-GO) were found to be highly stable enough in organic phases, e.g. a human serum, to be reliably used in bioapplications. In vivo biodistribution of the 198,199Au@AF-GO composite was investigated in rats bearing... 

    Application of sol-gel technique to synthesis of copper-cobalt spinel on the ferritic stainless steel used for solid oxide fuel cell interconnects

    , Article Journal of Power Sources ; Vol. 266, issue , 2014 , pp. 79-87 ; ISSN: 03787753 Paknahad, P ; Askari, M ; Ghorbanzadeh, M ; Sharif University of Technology
    Abstract
    The conductive CuCo2O4 spinel coating is applied on the surface of the AISI 430 ferritic stainless steel by the dip-coating sol-gel process and it is evaluated in terms of the microstructure, oxidation resistance and electrical conductivity. The results show that the CuCO2O 4 coating forms a double-layer scale consisting of a Cr, Fe-rich subscale and Cu-Co spinel top layer after 500 h in air at 800 °C. This scale is protective, acts as an effective barrier against Cr migration into the outer oxide layer and alleviates the cathode Cr-poisoning. The oxidation resistance is significantly enhanced by the protective coating with a parabolic rate constant of 5.8 × 10-13 gr2 cm-4 s -1, meanwhile... 

    Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane

    , Article Journal of Membrane Science ; Vol. 470, issue , 2014 , pp. 159-165 ; ISSN: 03767388 Maghsoudi, H ; Soltanieh, M ; Sharif University of Technology
    Abstract
    A high silica CHA-type membrane was synthesized by the in-situ crystallization method on a disk like α-alumina porous support to separate both acid (H2S, CO2) gases from methane. The membrane showed a permeance of 3.39×10-8mol/m2sPa for pure CO2with CO2/CH4 ideal selectivity of 21.6 at 303K and 100kPa pressure difference across the membrane. The membrane was also tested with N2 and O2 pure gases indicating a small O2/N2 selectivity of 1.2-1.4, which shows that this type of membrane is not suitable for O2/N2 separation. The membrane performance was also analyzed by binary (CO2-CH4) and ternary (H2S-CO2-CH4) gas mixtures, with compositions near the real sour natural gas (CO2: 2.13mol%, H2S:... 

    Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria

    , Article Journal of Alloys and Compounds ; Vol. 612 , 2014 , pp. 380-385 ; ISSN: 09258388 Nourmohammadi, A ; Rahighi, R ; Akhavan, O ; Moshfegh, A ; Sharif University of Technology
    Abstract
    Vertically aligned ZnO nanowires (NWs) hybridized with reduced graphene oxide sheets (rGO) were applied in efficient visible light photoinactivation of bacteria. To incorporate graphene oxide (GO) sheets within the NWs two different methods of drop-casting and electrophoretic deposition (EPD) were utilized. The EPD method yielded effective penetration of the positively charged GO sheets into the NWs to form a spider net-like structure, whereas the drop-casting method resulted in only a surface coverage of the GO sheets on top of the NWs. The electrical connection between the EPD-incorporated sheets and the NWs was checked by monitoring the electron transfer from UV-assisted photoexcited ZnO... 

    Electromechanical resonators based on electrospun ZnO nanofibers

    , Article Journal of Micro/ Nanolithography, MEMS, and MOEMS ; Vol. 13,Issue. 4 , 2014 ; ISSN: 19325150 Fardindoost, S ; Mohammadi, S ; Zad, A. I ; Sarvari, R ; Shariatpanahi, S. P ; Sharif University of Technology
    Abstract
    We present fabrication, characterization, and experimental results describing electrical actuation and readout of the mechanical vibratory response of electrospun ZnO nanofibers. For a fiber with an approximate radius of 200 nm and a length of 70 ìm, a resonance frequency around 3.62 MHz with a quality factor (Q) of about 235 in air at ambient conditions is observed. It is shown that the measured frequency of the resonance is consistent with results from finite element simulations. Also, the measurements were performed in an enclosed chamber with controlled levels of ethanol vapor. The adsorption of ethanol causes a shift in the resonance frequency of the fibers, which can be related to the... 

    The use of graphene in the self-organized differentiation of human neural stem cells into neurons under pulsed laser stimulation

    , Article Journal of Materials Chemistry B ; Vol. 2, Issue. 34 , 2014 , Pages 5602-5611 ; ISSN: 20507518 Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    Abstract
    An effective and self-organized differentiation of human neural stem cells (hNSCs) into neurons was developed by the pulsed laser stimulation of the cells on graphene films (prepared by drop-casting a GO suspension onto quartz substrates). The effects of graphene oxide (GO) and hydrazine-reduced graphene oxide (rGO) sheets on the proliferation of hNSCs were examined. The higher proliferation of the cells on the GO was assigned to its better hydrophilicity. On the other hand, the rGO sheets, which have significantly better electrical conductivity than GO, exhibited more differentiation of the cells into neurons. The pulsed laser stimulation not only resulted in an accelerated differentiation... 

    A novel field ionization gas sensor based on self-organized CuO nanowire arrays

    , Article Sensors and Actuators, A: Physical ; Vol. 216 , 2014 , pp. 202-206 ; ISSN: 09244247 Mohammadpour, R ; Ahmadvand, H ; Iraji Zad, A ; Sharif University of Technology
    Abstract
    In this study, we present fabrication and characterization of a gas ionization sensor based on high aspect ratio one-dimensional CuO nanowires as the field enhancing medium. Self-organized arrays of CuO nanowires have been synthesized based on a low-cost thermal oxidation method and integrated into a gas ionization sensor (GIS). The self-organized arrays of CuO nanowires have been employed to detect the identity of several gas species such as He, Ar and CO at ambient temperature and pressure. The sharp nanoscale size of CuO tips provide very high electric fields at moderate voltages (less than 100 V) and provoke the breakdown of different gases. The reduced breakdown current of the metal... 

    An investigation of the oxidative dehydrogenation of propane kinetics over a vanadium-graphene catalyst aiming at minimizing of the COx species

    , Article Chemical Engineering Journal ; Vol. 250 , 2014 , Pages 14-24 ; ISSN: 13858947 Fattahi, M ; Kazemeini, M ; Khorasheh, F ; Rashidi, A ; Sharif University of Technology
    Abstract
    Application of the DOE with the ANN in kinetic study of the ODHP was investigated.•The catalyst of vanadium/graphene synthesized through the hydrothermal technique.•The ANN and RSM's simulations were utilized to generate the extra data points.•Power law models and corresponding parameters determined to describe the reactions.•The optimization conducted in order to minimize the COx production. In the current investigation, an application of the design of experiments (DOE) along with the artificial neural networks (ANN) in a kinetic study of oxidative dehydrogenation of propane (ODHP) reaction over a synthesized vanadium-graphene catalyst at 400-500. °C presented aiming at minimizing the CO. x... 

    High-performance/low-temperature-processed dye solar cell counter electrodes based on chromium substrates with cube-like morphology

    , Article Journal of Power Sources ; Vol. 260 , 2014 , Pages 299-306 ; ISSN: 03787753 Behrouznejad, F ; Taghavinia, N ; Sharif University of Technology
    Abstract
    There is still an open question of how to prepare high-performance counter electrodes for dye solar cells (DSCs) at room temperature; a requirement for flexible DSCs. Here, we introduce Pt deposited cube-like chromium coating as a low-temperature highly-efficient counter electrode for DSCs. Cr is a chemically stable metal and can be easily electroplated on conductive substrates with high roughness (here ∼160 nm) and cube-like appearance. A cyclic electrochemical deposition method with optimized temperature and number of cycles is used to grow Pt nanoparticles on this surface and charge transfer resistance as low as 0.54 Ω cm2 and 0.27 Ω cm2 were obtained at 40 °C and 55 °C solution... 

    Kinetic modeling of oxidative dehydrogenation of propane (ODHP) over a vanadium-graphene catalyst: Application of the DOE and ANN methodologies

    , Article Journal of Industrial and Engineering Chemistry ; Vol. 20, issue. 4 , July , 2014 , p. 2236-2247 ; ISSN: 1226086X Fattahi, M ; Kazemeini, M ; Khorasheh, F ; Rashidi, A ; Sharif University of Technology
    Abstract
    In this research the application of design of experiment (DOE) coupled with the artificial neural networks (ANN) in kinetic study of oxidative dehydrogenation of propane (ODHP) over a vanadium-graphene catalyst at 400-500 °C and a method of data collection/fitting for the experiments were presented. The proposed reaction network composed of consecutive and simultaneous reactions with kinetics expressed by simple power law equations involving a total of 20 unknown parameters (10 reaction orders and 5 rate constants each expressed in terms of a pre-exponential factors and activation energies) determined through non-linear regression analysis. Because of the complex nature of the system, neural... 

    Synthesis, X-ray studies, and catalytic activity of tridentate Schiff base dioxo-molybdenum(VI)

    , Article Journal of Coordination Chemistry ; Volume 67, Issue 14 , 2014 ; ISSN: 00958972 Amini, M ; Khaksar, M ; Boghaei, D. M ; Bagherzadeh, M ; Ellern, A ; Woo, L. K ; Sharif University of Technology
    Abstract
    The reaction of a solution of MoO2(acac)2 in CH3OH and salicylidene 2-picoloyl hydrazone as a tridentate ONO donor Schiff base (ONO) afford a six-coordinated Mo(VI) complex [MoO2(ONO)(CH3OH)], with a distorted octahedral configuration. [MoO2(ONO)(CH3OH)] was isolated as an air-stable crystalline solid and fully characterized by single-crystal X-ray structure analysis. [MoO2(ONO)(CH3OH)] shows reactivity in the oxidation of sulfides to their corresponding sulfoxides using urea hydrogen peroxide as the oxidant at room temperature under air