Loading...
Search for: pak--a
0.022 seconds
Total 57 records

    A comprehensive FE study for design of anchored wall systems for deep excavations

    , Article Tunnelling and Underground Space Technology ; Volume 122 , 2022 ; 08867798 (ISSN) Maleki, J ; Pak, A ; Yousefi, M ; Aghakhani, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Anchored wall system is one of the common methods used for deep excavation stabilization adjacent to sensitive structures in urban areas. A key aspect of the stability analysis of deep excavations is the amount of deformations occurring on the facing wall and the adjacent structures. In this research, a large number of parametric studies considering all aspects of soil-structure interaction is carried out for different excavation geometries to find the optimal design, and the outcome is shown in the form of design tables and charts. Also, by a GA-PSO algorithm and using the large database obtained from the numerical simulations, a simple equation is developed that can predict the deflections... 

    Experimental studies on the effects of placement method and packing density of cubic armour units on the stability of low-crested breakwaters

    , Article Ocean Engineering ; Volume 266 , 2022 ; 00298018 (ISSN) Mohammadnia, M ; Pak, A ; Aliasgary, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Although concrete armour units have traditionally been used in two layers, the application of single-layer armour has attracted more attention in recent years because of its lower concrete volume and faster construction pace. Single-layer amour relies mainly on the contact between units to provide stability; however, installation of special armour types with surface projections for better interlocking, increases the possibility of breakage. During the last decade the idea of using bulky armour units such as cubes has been raised, and the application of these single-layer armour units has become common for high-crested breakwaters. However, the application of cube armours for low-crested... 

    XFEM modeling of the effect of in-situ stresses on hydraulic fracture characteristics and comparison with KGD and PKN models

    , Article Journal of Petroleum Exploration and Production Technology ; 2022 ; 21900558 (ISSN) Esfandiari, M ; Pak, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Increasing the permeability of hydrocarbon reservoirs by creating artificial cracks that are induced by injection of fluids under high pressure is called hydraulic fracturing (HF). This method is widely used in petroleum reservoir engineering. For design of Hydraulic Fracture operations, several analytical models have been developed. KGD and PKN are the first and most used analytical models in this area. Although number of advanced softwares are developed in recent years, KGD and PKN models are still popular and have even been used in a number of softwares. In both models the characteristics of the fracture namely: fracture length (L), fracture width (w), and fluid pressure at the crack... 

    Large deformation finite element modeling of rubble mound breakwater built on soft seabed using coupled eulerian–lagrangian method

    , Article Indian Geotechnical Journal ; Volume 51, Issue 2 , 2021 , Pages 315-328 ; 09719555 (ISSN) Masoudi, S ; Shahir, H ; Pak, A ; Sharif University of Technology
    Springer  2021
    Abstract
    For the design of rubble mound breakwaters on soft soil, it is essential to predict the behavior of soft soil and large deformations phenomena occurring in the course of construction of the rubble mound breakwater. Large deformations in various problems can be well simulated using the coupled Eulerian–Lagrangian (CEL) method. In this study, the CEL method has been used to simulate the rubble mounds construction on soft soil and predict the resulting settlements. To validate the numerical model, the results of three experiments conducted in the physical modeling laboratory at Kharazmi University were used. Also, two case studies of real rubble mound breakwaters constructed on soft seabeds... 

    Numerical-probabilistic modeling of the liquefaction-induced free fields settlement

    , Article Soil Dynamics and Earthquake Engineering ; Volume 149 , 2021 ; 02677261 (ISSN) Sadeghi, H ; Pak, A ; Pakzad, A ; Ayoubi, P ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Liquefaction is a phenomenon through which saturated sandy soil loses its shear strength and turns into a liquefied state. One of the most detrimental consequences of liquefaction is the reconsolidation volumetric settlements after the earthquakes, which is due to the dissipation of excess pore pressure caused by earthquakes. Severe floods can follow these settlements in free fields such as grounds close to the sea or rivers. Several researchers studied this phenomenon using data obtained from experiments in the lab or observations in the fields. Previous works were mainly based on a limited number of experimental observations and considered loadings and boundary conditions that were... 

    Numerical simulation of sanding using a coupled hydro-mechanical sand erosion model

    , Article Journal of Rock Mechanics and Geotechnical Engineering ; Volume 12, Issue 4 , 2020 , Pages 811-820 Fetrati, M ; Pak, A ; Sharif University of Technology
    Chinese Academy of Sciences  2020
    Abstract
    Mechanical failure of materials adjacent to the production cavity and material disaggregation caused by fluid drag are considered as the most important parameters that affect sand production. In light of such factors, the coupling of two mechanisms-mechanical instability and hydrodynamic erosion-is indispensable in order to model this phenomenon successfully. This paper examines the applicability of a coupled hydro-mechanical erosion criterion for simulating sand production using the finite element method. The porous medium was considered fully saturated. The onset of sanding and production of sand were predicted by coupling mechanical failure and subsequent erosion of the grain particles... 

    A new method for assessment of engineering drawing answer scripts using fuzzy logic

    , Article Journal of Computational Applied Mechanics ; Volume 51, Issue 1 , June , 2020 , Pages 170-183 Haghshenas Gorgani, H ; Jahantigh Pak, A ; Sharif University of Technology
    University of Tehran  2020
    Abstract
    Popular method for assessment of final exam answer scripts in university and among the engineering drawing answer scripts based on absolute true or false judgment and assigning a single number or letter to answer of each problem cannot be so fair. To obtain a fair assessment method, we considered “imagination”, “accuracy”, “drawing” and “innovation” that are objectives of engineering drawing course to be separately assessed for each problem. Flexibility and linguistic properties of fuzzy logic made us use it as the basis of our method. In addition, fuzzy variables and membership functions are easily linguistic explainable, and adjustable to different conditions. “Answering time” was added as... 

    Casing failure in salt rock: numerical investigation of its causes

    , Article Rock Mechanics and Rock Engineering ; Volume 53, Issue 9 , 2020 , Pages 3903-3918 Taheri, S. R ; Pak, A ; Sharif University of Technology
    Springer  2020
    Abstract
    Numerous cases of casing failure have been reported worldwide. Depletion-induced compaction is one of the main factors that may cause casing failure. Stress perturbation in salt layers may accommodate rock flow which endangers the stability of cased wells. Besides, poor cementing jobs are recognized as one of the wellbore instability causes. These factors need to be considered to determine the mechanism behind the casing failure. In this study, the creep behavior of the caprock salt layer in the southwest Iranian oil fields is experimentally studied through a number of creep tests under conditions of elevated temperature and pressure. Then, a three-dimensional finite element analysis is... 

    Investigation of rock salt layer creep and its effects on casing collapse

    , Article International Journal of Mining Science and Technology ; Volume 30, Issue 3 , 2020 , Pages 357-365 Taheri, S. R ; Pak, A ; Shad, S ; Mehrgini, B ; Razifar, M ; Sharif University of Technology
    China University of Mining and Technology  2020
    Abstract
    Casing collapse is one of the costly incidents in the oil industry. In the oil fields of southwest Iran, most casing collapses have occurred in Gachsaran formation, and the halite rock salt layer in this formation may be the main cause for these incidents because of its peculiar creep behavior. In this research, triaxial creep experiments have been conducted on Gachsaran salt samples under various temperatures and differential stresses. The main purpose was to determine the creep characteristics of Gachsaran rock salt, and to examine the role of creep in several casing collapses that occurred in this formation. Results indicated that the halite rock salt of Gachsaran formation basically... 

    Simulation of wetting tendency of fluids with high density ratios using RK Lattice Boltzmann method

    , Article 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2019, 14 October 2019 through 18 October 2019 ; 2020 Sadeghi, M ; Pak, A ; Sadeghi, H ; Sharif University of Technology
    Asian Regional Conference on Soil Mechanics and Geotechnical Engineering  2020
    Abstract
    Several lattice Boltzmann models for multi-phase flow have been developed, but few of them are capable of modeling fluid flows with high density ratio in the order of 1000. Therefore, an advanced chromodynamics, Rothmann-Keller (RK) type model is employed in current study, which can handle liquid-gas density ratio in the order of 1000 and viscosity ratio in the order of 100. Other distinctive characteristics of the proposed model are high stability, and capability of setting parameters such as surface tension independently. In spite of these benefits, the original RK model fails to model wetting tendency of the fluids. As a result, it is impossible to correctly simulate two-fluid phase flow... 

    Weakly compressible SPH simulation of cnoidal waves with strong plunging breakers

    , Article Ocean Dynamics ; Volume 69, Issue 6 , 2019 , Pages 657-678 ; 16167341 (ISSN) Sarfaraz, M ; Pak, A ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Hydrodynamics of highly nonlinear cnoidal waves and their subsequent strong plunging breakers are among the least understood and most significant issues in coastal engineering. In this work, a weakly compressible smoothed particle hydrodynamics (SPH) formulation is used for the study of the generation and propagation of cnoidal waves and investigation of the characteristics of the induced strong plunging breakers. Numerical results show the capability of the SPH scheme for properly simulating the cnoidal waves. For the case of strong plunging breakers, dynamic and kinematic features of the flow are computed and compared with certain implementations of other numerical techniques. SPH is shown... 

    Extrinsically enriched element free Galerkin method for heat and fluid flow in deformable porous media involving weak and strong discontinuities

    , Article Computers and Geotechnics ; Volume 103 , 2018 , Pages 179-192 ; 0266352X (ISSN) Iranmanesh, M. A ; Pak, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, an extrinsically enriched element free Galerkin (EFG) method is proposed for the thermo-hydro-mechanical simulation of saturated porous media. By taking advantage of partition of unity property of moving least square shape functions, weak discontinuities such as material interfaces are modeled using the Ridge enrichment function and impermeable strong discontinuities are simulated using the Heaviside function. Some guidelines are proposed for the selection of EFG numerical parameters to ensure the stability and accuracy of the results. Numerical examples are provided to illustrate the capability of the proposed approach for fully coupled THM analysis of discontinuous porous... 

    Non-isothermal simulation of the behavior of unsaturated soils using a novel EFG-based three dimensional model

    , Article Computers and Geotechnics ; Volume 99 , 2018 , Pages 93-103 ; 0266352X (ISSN) Iranmanesh, M. A ; Pak, A ; Samimi, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, a three-dimensional simulation of fully coupled multiphase fluid flow and heat transfer through deforming porous media is presented in the context of EFG mesh-less method. Spatial discretization of the system of governing equations is performed using EFG and a fully implicit finite difference scheme is employed for temporal discretization. Penalty method is used for imposition of essential boundary conditions. The developed numerical tool is employed to simulate two problems of nuclear waste disposal and CO2 sequestration in deep underground strata. The obtained results demonstrate the capability and robustness of the developed EFG code. © 2018 Elsevier Ltd  

    Numerical investigation of the stability of armour units in low-crested breakwaters using combined SPH–Polyhedral DEM method

    , Article Journal of Fluids and Structures ; Volume 81 , 2018 , Pages 14-35 ; 08899746 (ISSN) Sarfaraz, M ; Pak, A ; Sharif University of Technology
    Academic Press  2018
    Abstract
    Low-crested breakwaters have become more attractive because they do not hinder the beautiful coastal landscape and are more environmentally friendly comparing to traditional breakwaters. The available formulae for design of these types of structures mainly focus on wave transmission, reflection and dissipation aspects. However, stability of the armour blocks are not directly taken into account in the design process. In this study the Lagrangian meshfree method of SPH along with a discrete element method i.e. Polyhedral DEM are used to simulate the interaction between the sea water waves with different characteristics and low-crested breakwaters constructed using cubic armour blocks. SPH is... 

    Impact of hydraulic hysteresis on the small strain shear modulus of unsaturated sand

    , Article Soils and Foundations ; Volume 58, Issue 2 , 2018 , Pages 344-354 ; 00380806 (ISSN) Khosravi, A ; Shahbazan, P ; Pak, A ; Sharif University of Technology
    Japanese Geotechnical Society  2018
    Abstract
    The results of previous studies on silt and clay indicated that variations in the small strain shear modulus, Gmax, during hydraulic hysteresis had a non-linear increasing trend with matric suction, with greater values upon wetting. However, due to differences in material properties and inter-particle forces, a different behavior is expected for the Gmax of unsaturated sand. Although considerable research has been devoted in recent years to characterizing the behavior of the Gmax of sand during drying, less attention has been paid to the effect of hydraulic hysteresis on Gmax and its variations during wetting. In the study presented herein, an effective stress-based semi-empirical model was... 

    SPH numerical simulation of tsunami wave forces impinged on bridge superstructures

    , Article Coastal Engineering ; Volume 121 , 2017 , Pages 145-157 ; 03783839 (ISSN) Sarfaraz, M ; Pak, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    This paper addresses numerically-derived tsunami wave loads on bridge superstructures using smoothed particle hydrodynamics (SPH), which is a type of mesh-free methods. Although there exist some relationships for the case of impinged loads on bridges exerted by regular (sinusoidal) waves, for the case of solitary waves such as tsunamis, no relation has yet been proposed in the literature. This shortcoming is partly due to the lack of understanding the mechanism of wave action on the bridge superstructures. In this study, three water depths, three wave amplitudes and four submergence depths of the deck are considered for the process of numerical investigation of tsunami-induced loads on... 

    Liquefaction-induced settlement of shallow foundations on two-layered subsoil strata

    , Article Soil Dynamics and Earthquake Engineering ; Volume 94 , 2017 , Pages 35-46 ; 02677261 (ISSN) Ayoubi, P ; Pak, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Geotechnical design codes have been shifted from classical limit equilibrium analysis toward the performance-based procedures. In foundation design, settlement is the most representative parameter for its performance. Settlement of shallow foundations subjected to earthquake loading and its consequences is one of the most outstanding issues which should be considered in designing different structures. In this study, settlement of shallow footing on two-layered subsoil strata under earthquake loading is of concern. The numerical study presented in this research by means of a 3D dynamic fully coupled u-p analysis, addresses the effect of different parameters on shallow foundation settlement... 

    Prediction of lateral spreading displacement on gently sloping liquefiable ground

    , Article Geotechnical Frontiers 2017, 12 March 2017 through 15 March 2017 ; Issue GSP 281 , 2017 , Pages 267-276 ; 08950563 (ISSN) Ghasemi Fare, O ; Pak, A ; Geo-Institute (G-I) of the American Society of Civil Engineers; Industrial Fabrics Association International (IFAI) ; Sharif University of Technology
    American Society of Civil Engineers (ASCE)  2017
    Abstract
    A fully coupled numerical analysis using Biot's theory with u-p formulation considering variable permeability during liquefaction is used in this study to simulate liquefaction induced lateral spreading phenomenon. A centrifuge test performed on liquefiable soil at Rensselaer Polytechnic Institute is simulated using the developed model. The numerical results are in good agreement with experimental observations. A number of numerical simulations under different geometric, site-specific, and ground acceleration parameters have been carried out in the course of this study. Based on the statistical analysis conducted on the results of 31 different models, a new relation is proposed for... 

    A performance-based approach for design of ground densification to mitigate liquefaction

    , Article Soil Dynamics and Earthquake Engineering ; Volume 90 , 2016 , Pages 381-394 ; 02677261 (ISSN) Shahir, H ; Pak, A ; Ayoubi, P ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In performance-based geotechnical earthquake engineering, the required degree and spatial extent of ground densification for mitigation of liquefaction beneath a structure should be determined based on the acceptable levels of performance of foundation. Currently, there is no solution for evaluation of the amount of settlement and tilt of footings constructed on a densified ground which is surrounded by a liquefiable soil. This implies the need for numerical procedures for simulation of seismic behavior of shallow foundations supported on both liquefiable and densified subsoil. In this paper, the dynamic response of shallow foundations on a densified ground is studied using a 3D fully... 

    Numerical investigation of the effects of geometric and seismic parameters on liquefaction-induced lateral spreading

    , Article Soil Dynamics and Earthquake Engineering ; Volume 89 , 2016 , Pages 233-247 ; 02677261 (ISSN) Ghasemi Fare, O ; Pak, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The lateral movement of a liquefiable soil layer on gentle slopes is the most visible and devastating type of liquefaction-induced ground failure. Recent earthquakes have shown that this phenomenon causes severe damages to coastal structures, pier of the bridges and life-lines by exerting large lateral forces on the structures. In this paper coupled dynamic field equations of extended Biot's theory with u-p formulation are used for simulating the phenomenon and the soil behavior is modeled by a critical state two-surface plasticity model for sands. Furthermore, in this study variation of permeability coefficient during liquefaction is taken into account. The permeability coefficient is...