Loading...
Search for: parameter-uncertainty
0.007 seconds
Total 30 records

    Design and Comparison of an Adaptive and Robust Control Strategy to Improve the Boiler-Turbine unit Performance and Reduction of Make-Up Water

    , M.Sc. Thesis Sharif University of Technology Ghabraei, Soheil (Author) ; Moradi, Hamed (Supervisor) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    There is many sources of uncertainty in the power plants such as continuous changes of the ambient temperature and the climate condition. The controller of the boiler-turbine unite should be robust against uncertainties and overcome the changes in the operating condition. In this regard, a robust adaptive variable structure control scheme (RAVCS) is proposed to control a nonlinear multi-input multi-output (MIMO) model of industrial boiler-turbine unite, in the presence of unknown parameters and bounded uncertainties as well as external disturbances. Moreover, a robust controller based on and in the presence of rational deviation in parameters, is designed. To investigate the zero... 

    Prediction-based Control for Mitigation of Axial-torsional Vibrations In a Distributed Drill-String System in the Presence of Parametric Uncertainties

    , M.Sc. Thesis Sharif University of Technology Tashakori, Shabnam (Author) ; Vossoughi, Gholamreza (Supervisor) ; Zohoor, Hassan (Supervisor)
    Abstract
    Drill strings are subjected to complex coupled dynamics. Therefore, accurate dynamic modeling, which can represent the physical behavior of real drill strings, is of great importance for system analysis and control. The most widely used dynamic models for such systems are the lumped element models which neglect the system distributed feature. In this thesis, an infinite-dimensional model for the vibrational dynamics of the drill-string, called neutral-type time delay model, is modified to investigate the coupled axial-torsional vibrations in drill strings. This model is derived directly from the distributed parameter model by employing the d’Alembert method. Coupling of axial and torsional... 

    Application of multi-criterion robust optimization in water-flooding of oil reservoir

    , Article Journal of Petroleum Science and Engineering ; Volume 109 , September , 2013 , Pages 1-11 ; 09204105 (ISSN) Yasari, E ; Pishvaie, M. R ; Khorasheh, F ; Salahshoor, K ; Kharrat, R ; Sharif University of Technology
    2013
    Abstract
    Most of the reported robust and non-robust optimization works are formulated based on a single-objective optimization, commonly in terms of net present value. However, variation of economical parameters such as oil price and costs forces such high computational optimization works to regenerate their optimum water injection policies. Furthermore, dynamic optimization strategies of water-flooding often lack robustness to geological uncertainties. This paper presents a multi-objective while robust optimization methodology by incorporating three dedicated objective functions. The goal is to determine optimized and robust water injection policies for all injection wells. It focuses on reducing... 

    Assistive-compliant control of wearable robots for partially disabled individuals

    , Article Control Engineering Practice ; Volume 74 , 2018 , Pages 177-190 ; 09670661 (ISSN) Taherifar, A ; Vossoughi, G ; Selk Ghafari, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The main objective of this research was to introduce a smart assist-as-needed control system that helps elderly or partially paralyzed individuals. To ensure that a smart and compliant controller, in each cycle of the gait is developed, we adapted the target impedance gains and feed-forward force of the assistive mechanism according to a learning law. A strength metric was defined to determine when the human needs assistance. Then, a cost function was introduced and the gains are modified to reduce the cost function. Applying the proposed controller, the interaction force between patient's limb and robot was reduced in cases wherein user has sufficient strength for task execution and... 

    Application of particle swarm optimization in chaos synchronization in noisy environment in presence of unknown parameter uncertainty

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 17, Issue 2 , 2012 , Pages 742-753 ; 10075704 (ISSN) Shirazi, M. J ; Vatankhah, R ; Boroushaki, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    In this paper, particle swarm optimization (PSO) is applied to synchronize chaotic systems in presence of parameter uncertainties and measurement noise. Particle swarm optimization is an evolutionary algorithm which is introduced by Kennedy and Eberhart. This algorithm is inspired by birds flocking. Optimization algorithms can be applied to control by defining an appropriate cost function that guarantees stability of system. In presence of environment noise and parameter uncertainty, robustness plays a crucial role in succeed of controller. Since PSO needs only rudimentary information about the system, it can be a suitable algorithm for this case. Simulation results confirm that the proposed... 

    Model-based topography estimation in trolling mode atomic force microscopy

    , Article Applied Mathematical Modelling ; Volume 77 , 2020 , Pages 1025-1040 Seifnejad Haghighi, M ; Sajjadi, M ; Nejat Pishkenari, H ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    In this study, a novel approach based on a modified Kalman filter algorithm is presented to directly estimate and measure the surface topography of samples by trolling mode atomic force microscopy. Trolling mode atomic force microscopy was introduced as an atomic force microscopy alternative to overcome imaging problems in liquid environments by reducing the liquid-resonator interaction forces. In conventional imaging techniques, the time to reach the steady state periodic motion of the oscillating probe restricts scanning speed. To overcome this limitation, we propose a novel imaging technique for trolling mode atomic force microscopy based on the system dynamics model and using the... 

    Robust fractional-order compensation in the presence of uncertainty in a pole/zero of the plant

    , Article IEEE Transactions on Control Systems Technology ; Volume 26, Issue 3 , May , 2018 , Pages 797-812 ; 10636536 (ISSN) Sayyaf, N ; Tavazoei, M. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    This paper deals with robust frequency compensation in control of fractional-order plants with an uncertain fractional pole/zero (or specially in control of integer-order plants with an uncertain pole/zero). The specifications yielding a robust compensation are introduced, and fractional-order compensators are proposed for satisfying these specifications in the set-point tracking control of the above-mentioned plants. Also, the infinite ranges for the uncertain parameter of the plant, in which satisfying robust compensation specifications is possible by the obtained compensators, are exactly specified. Furthermore, the stability of the obtained control system is analytically analyzed.... 

    Impacts of plug-in hybrid electric vehicle uncertainty and grid unavailability on home load management

    , Article 2012 11th International Conference on Environment and Electrical Engineering, EEEIC 2012, Venice, 18 May 2012 through 25 May 2012 ; 2012 , Pages 693-698 ; 9781457718281 (ISBN) Rastegar, M ; Safdarian, A ; Fotuhi-Firuzabad, M ; Aminifar, F ; Sharif University of Technology
    IEEE  2012
    Abstract
    A massive focus has recently been made on demand response (DR) programs, aimed to the electricity price reduction, reliability improvement, and energy efficiency. Basically, DR programs are divided into twofold main categories, namely incentive-based programs and price- or time-based programs. The focus of this paper is on priced-based DR programs including consumer responses to the time differentiated pricing. Home load management (HLM) program is designed to control responsive appliances and charging/discharging cycles of plug-in hybrid electric vehicles (PHEVs) by the consumer. Uncertain parameters associated with PHEV, i.e. its departure/travelling time and energy consumption as well as... 

    Robust optimization approach for an aggregate production–distribution planning in a three-level supply chain

    , Article International Journal of Advanced Manufacturing Technology ; Vol. 76, issue. 1-4 , 2014 , p. 623-634 Niknamfar, A. H ; Niaki, S. T. A ; Pasandideh, S. H. R ; Sharif University of Technology
    Abstract
    An aggregate production–distribution (P-D) planning generates an aggregate plan for regular time, overtime, outsourcing, hiring, and firing that takes into account distributing, inventory holding, backordering, and machine capacity for a definite planning horizon. A large number of P-D problems require decisions to be made in the presence of uncertainty. Previous research on this topic mainly utilized either stochastic programming or fuzzy programming to cope with the uncertainty. This may lead into huge challenges for supply chain managers that use non-robust P-D planning in uncertain environments. Moreover, there has been little discussion about robust optimization approach in aggregate... 

    Adaptive backstepping control of uncertain lorenz system

    , Article Proceeding of the 5th International Symposium on Mechatronics and its Applications, ISMA 2008, 27 May 2008 through 29 May 2008, Amman ; 2008 ; 9781424420346 (ISBN) Nejat Pishkenari, H ; Meghdari, A ; Sharif University of Technology
    2008
    Abstract
    In this paper, a novel robust adaptive control method is proposed for controlling the well-known Lorenz chaotic attractor. Firstly, we design a new Backstepping controller for controlling the Lorenz system based on the Lyapunov stability theorem. The proposed method is different from the typical Backstepping control method and it can overcome the singularity problem appeared in using the typical Backstepping control method. So by exploiting the property of the system, the resulting controller is singularity free and the closed-loop system is stable globally. Since in practice we have not access to full information of the system states, we set the controller parameters in order to achieve a... 

    Robust control strategy for suppression of regenerative chatter in turning

    , Article Journal of Manufacturing Processes ; Volume 11, Issue 2 , 2009 , Pages 55-65 ; 15266125 (ISSN) Moradi, H ; Movahhedy, M. R ; Vossoughi, G. R ; Sharif University of Technology
    Elsevier BV  2009
    Abstract
    Chatter suppression is of great importance in machining processes for achieving more material removal rate, high precision and surface quality. In this paper, an H∞ control algorithm is proposed for chatter suppression in the presence of tool wear and parameter uncertainties. Orthogonal turning process is modelled as a single degree of freedom model that includes the effect of tool flank wear. Control input of the system is the force provided by a piezo-actuator.The turning process model includes the uncertainties in cutting velocity, tool wear and dynamic model parameters. Using the μ-synthesis technique, an H∞ optimal controller is designed based on a DK-iteration algorithm. The... 

    Predicting probabilistic distribution functions of response parameters using the endurance time method

    , Article Structural Design of Tall and Special Buildings ; Volume 28, Issue 1 , 2019 ; 15417794 (ISSN) Mashayekhi, M. R ; Mirfarhadi, S. A ; E. Estekanchi, H ; Vafai, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    The main objective of this study is the development of endurance time (ET) excitations in order to take structural response uncertainty into account for use in performance-based earthquake engineering. There are several uncertainties in earthquake engineering, including earthquake occurrence, structural response, damage, and loss. In the current research, structural response uncertainty is directly included in the ET method, which is an analysis method used for performing structural behavior assessment under seismic actions. Conventional practice of the ET method does not provide any information about seismic response distribution. Despite the simplicity of the ET method, it is an accurate... 

    Forecasting the effects of a Canada-US currency union on output and prices: A counterfactual analysis

    , Article Journal of Forecasting ; Volume 32, Issue 7 , 2013 , Pages 639-653 ; 02776693 (ISSN) Mahdi Barakchian, S ; Sharif University of Technology
    2013
    Abstract
    This paper is a counterfactual analysis investigating the consequences of the formation of a currency union for Canada and the USA: whether outputs increase and prices decrease if these countries form a currency union. We use a two-country cointegrated model to conduct the counterfactual analysis, where the conditional forecasts are generated based on the Gaussian assumption. To deal with structural breaks and model uncertainty, conditional forecasts are generated from different models/estimation windows and the model-averaging technique is used to combine the forecasts. We also examine the robustness of our results to parameter uncertainty using the wild bootstrap method. The results show... 

    Sea-level rise impacts on seawater intrusion in coastal aquifers: review and integration

    , Article Journal of Hydrology ; Volume 535 , 2016 , Pages 235-255 ; 00221694 (ISSN) Ketabchi, H ; Mahmoodzadeh, D ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Abstract
    Sea-level rise (SLR) influences groundwater hydraulics and in particular seawater intrusion (SWI) in many coastal aquifers. The quantification of the combined and relative impacts of influential factors on SWI has not previously been considered in coastal aquifers. In the present study, a systematic review of the available literature on this topic is first provided. Then, the potential remaining challenges are scrutinized. Open questions on the effects of more realistic complexities such as gradual SLR, parameter uncertainties, and the associated influences in decision-making models are issues requiring further investigation.We assess and quantify the seawater toe location under the impacts... 

    Adaptive robust synchronization of chaotic systems using particle swarm optimization based controller

    , Article Program and Abstract Book - 2010 7th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2010, 8 September 2010 through 10 September 2010 ; September , 2010 , Pages 54-59 ; 9781424473120 (ISBN) Jahromi Shirazi, M ; Vatankhah, R ; Boroushaki, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    In this paper, a robust control design strategy is introduced to synchronize two different chaotic systems. The controller is based on particle swarm optimization (PSO). Particle swarm optimization is a well-known evolutionary optimization algorithm inspired by organism behavior of birds flocking and fish schooling. Our control approach is based on defining a suitable cost function in such a way that minimizing it guarantees the control of system. Due to the nature of PSO algorithm, the designed controller is strongly robust. It is shown that the proposed controller can overcome the parameter uncertainty without any extra information about the system. Comparison of proposed method with... 

    Stabilizing periodic orbits of chaotic systems using adaptive critic-based neurofuzzy controller

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009 ; Vol. 4, Issue. PART C , 2009 , pp. 1759-1767 ; ISBN: 9780791849019 Honarvar, M ; Vatankhah, R ; Salarieh, H ; Boroushaki, M ; Alasty, A ; Sharif University of Technology
    Abstract
    In this paper design and evaluation of an adaptive critic- based neurofuzzy controller for the stabilizing periodic orbits of chaotic systems has been presented in detail. The main superiority of the proposed controller over previous analogous fuzzy logic controller design approaches, e.g., genetic fuzzy logic controller, is its online tuning characteristic and remarkable reduced amount of computations used for parameter adaptation, which makes it desirable for real time applications. Considering the simplicity of this controller and its independence from the system model, this control method has the advantage of online learning and control, and can be applied to a large variety of systems.... 

    Stabilizing periodic orbits of chaotic systems using adaptive critic-based neurofuzzy controller

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 30 August 2009 through 2 September 2009 ; Volume 4, Issue PART C , August–September , 2010 , Pages 1759-1767 ; 9780791849019 (ISBN) Honarvar, M ; Vatankhah, R ; Salarieh, H ; Boroushaki, M ; Alasty, A ; Sharif University of Technology
    2010
    Abstract
    In this paper design and evaluation of an adaptive critic- based neurofuzzy controller for the stabilizing periodic orbits of chaotic systems has been presented in detail. The main superiority of the proposed controller over previous analogous fuzzy logic controller design approaches, e.g., genetic fuzzy logic controller, is its online tuning characteristic and remarkable reduced amount of computations used for parameter adaptation, which makes it desirable for real time applications. Considering the simplicity of this controller and its independence from the system model, this control method has the advantage of online learning and control, and can be applied to a large variety of systems.... 

    Stabilizing periodic orbits of chaotic systems using adaptive critic-based neurofuzzy controller

    , Article Proceedings of the ASME Design Engineering Technical Conference, 30 August 2009 through 2 September 2009, San Diego, CA ; Volume 4, Issue PARTS A, B AND C , 2009 , Pages 1759-1767 ; 9780791849019 (ISBN) Honarvar, M ; Vatankhah, R ; Salarieh, H ; Boroushaki, M ; Alasty, A ; Sharif University of Technology
    Abstract
    In this paper design and evaluation of an adaptive critic-based neurofuzzy controller for the stabilizing periodic orbits of chaotic systems has been presented in detail. The main superiority of the proposed controller over previous analogous fuzzy logic controller design approaches, e.g., genetic fuzzy logic controller, is its online tuning characteristic and remarkable reduced amount of computations used for parameter adaptation, which makes it desirable for real time applications. Considering the simplicity of this controller and its independence from the system model, this control method has the advantage of online learning and control, and can be applied to a large variety of systems.... 

    Finite time-Lyapunov based approach for robust adaptive control of wind-induced oscillations in power transmission lines

    , Article Journal of Sound and Vibration ; Volume 371 , 2016 , Pages 19-34 ; 0022460X (ISSN) Ghabraei, S ; Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Academic Press  2016
    Abstract
    Large amplitude oscillation of the power transmission lines, which is also known as galloping phenomenon, has hazardous consequences such as short circuiting and failure of transmission line. In this article, to suppress the undesirable vibrations of the transmission lines, first the governing equations of transmission line are derived via mode summation technique. Then, due to the occurrence of large amplitude vibrations, nonlinear quadratic and cubic terms are included in the derived linear equations. To suppress the vibrations, arbitrary number of the piezoelectric actuators is assumed to exert the actuation forces. Afterwards, a Lyapunov based approach is proposed for the robust adaptive... 

    Design & application of adaptive variable structure & H∞ robust optimal schemes in nonlinear control of boiler-turbine unit in the presence of various uncertainties

    , Article Energy ; Volume 142 , 2018 , Pages 1040-1056 ; 03605442 (ISSN) Ghabraei, S ; Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this article, to improve the precision, performance and robustness of an industrial boiler-turbine, two robust controllers are designed. First, a robust adaptive variable structure control scheme (RAVSC) is proposed to control a nonlinear multi-inputs multi-outputs (MIMO) model of an industrial boiler-turbine unit, in the presence of significant uncertainties and external disturbances. To guarantee the reliable performance of the RAVSC, appropriate adaption and control laws are introduced to compensate the uncertainties and modeling imprecisions and guarantee the convergence to the sliding surface. Then, the robustness and stability of the proposed RAVSC is proved via Lyapunov stability...