Loading...
Search for: particle-swarm-optimization-algorithm
0.009 seconds
Total 49 records

    Developing a multi-objective multi-layer model for optimal design of residential complex energy systems

    , Article International Journal of Electrical Power and Energy Systems ; Volume 138 , 2022 ; 01420615 (ISSN) Davoudi, M ; Jooshaki, M ; Moeini Aghtaie, M ; Hossein Barmayoon, M ; Aien, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Optimal planning of residential complex energy systems requires thorough mathematical modelling to address the interconnections between all the energy installations from the largest ones, shared by all the residents, to the smallest ones in each distinct unit. Besides, conflicting desires of investors and residents in various aspects such as reliability index make this problem more challenging. In response, this paper presents a thorough framework to obtain the optimum design and operation of a residential complex energy system from scratch. To address the appropriate interconnection between various components of such an energy system, a multi-layer energy hub structure is proposed. Besides,... 

    A robust simulation optimization algorithm using kriging and particle swarm optimization: application to surgery room optimization

    , Article Communications in Statistics: Simulation and Computation ; Volume 50, Issue 7 , 2021 , Pages 2025-2041 ; 03610918 (ISSN) Azizi, M. J ; Seifi, F ; Moghadam, S ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Simulation optimization is an endeavor to determine the best combination of inputs that result in the best system performance criterion without evaluating all possible combinations. Since simulation optimization applies to many problems, it is extensively studied in the literature with different methods. However, most of these methods ignore the uncertainty of the systems’ parameters, which may lead to a solution that is not robustly optimal in reality. Motivated by this uncertainty, we propose a robust simulation optimization algorithm that follows the well-known Taguchi standpoint but replaces its statistical technique with a minimax method based on the kriging (Gaussian process)... 

    Implementation of APSO and improved APSO on Non-cascaded and cascaded short term hydrothermal scheduling

    , Article IEEE Access ; Volume 9 , 2021 , Pages 77784-77797 ; 21693536 (ISSN) Fakhar, M. S ; Kashif, S. A. R ; Liaquat, S ; Rasool, A ; Padmanaban, S ; Iqbal, M. A ; Baig, M. A ; Khan, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Short-term hydrothermal scheduling (STHTS) is a highly non-linear, multi-model, non-convex, and multi-dimensional optimization problem that has been worked upon for about 5 decades. Many research articles have been published in solving different test cases of STHTS problem, while establishing the superiority of one type of optimization algorithm over the type, in finding the near global best solution of these complex problems. This paper presents the implementation of an improved version of a variant of the Particle Swarm Optimization algorithm (PSO), known as Accelerated Particle Swarm Optimization (APSO) on three benchmark test cases of STHTS problems. The adaptive and variable nature of... 

    Design and implementation of an ADC-based real-time simulator along with an optimal selection of the switch model parameters

    , Article Electrical Engineering ; Volume 103, Issue 5 , 2021 , Pages 2315-2325 ; 09487921 (ISSN) Rezaei Larijani, M ; Zolghadri, M. R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The method for modeling switching converters plays a key role in real-time simulators. Associate discrete circuit (ADC) modeling technique is a commonly used method for modeling the switching converter. However, the optimal selection of the ADC-based switch model parameters has great importance in the accuracy of the real-time simulator. In this paper, the design of a real-time simulator for a switching power converter has been done, in which a novel method for detecting optimum values of the switch model parameters has been expressed. Particle swarm optimization (PSO) algorithm is used to find these optimum values using state-space analysis of the modeled circuit in the z-domain. The... 

    GEPSO: A new generalized particle swarm optimization algorithm

    , Article Mathematics and Computers in Simulation ; Volume 179 , 2021 , Pages 194-212 ; 03784754 (ISSN) Sedighizadeh, D ; Masehian, E ; Sedighizadeh, M ; Akbaripour, H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Particle Swarm Optimization (PSO) algorithm is a nature-inspired meta-heuristic that has been utilized as a powerful optimization tool in a wide range of applications since its inception in 1995. Due to the flexibility of its parameters and concepts, PSO has appeared in many variants, probably more than any other meta-heuristic algorithm. This paper introduces the Generalized Particle Swarm Optimization (GEPSO) algorithm as a new version of the PSO algorithm for continuous space optimization, which enriches the original PSO by incorporating two new terms into the velocity updating equation. These terms aim to deepen the interrelations of particles and their knowledge sharing, increase... 

    Experimental investigation on improvement of wet cooling tower efficiency with diverse packing compaction using ann-pso algorithm

    , Article Energies ; Volume 14, Issue 1 , 2021 ; 19961073 (ISSN) Alimoradi, H ; Soltani, M ; Shahali, P ; Moradi Kashkooli, F ; Larizadeh, R ; Raahemifar, K ; Adibi, M ; Ghasemi, B ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    In this study, a numerical and empirical scheme for increasing cooling tower performance is developed by combining the particle swarm optimization (PSO) algorithm with a neural network and considering the packing’s compaction as an effective factor for higher accuracies. An experimental setup is used to analyze the effects of packing compaction on the performance. The neural network is optimized by the PSO algorithm in order to predict the precise temperature difference, efficiency, and outlet temperature, which are functions of air flow rate, water flow rate, inlet water temperature, inlet air temperature, inlet air relative humidity, and packing compaction. The effects of water flow rate,... 

    Experimental investigation on improvement of wet cooling tower efficiency with diverse packing compaction using ann-pso algorithm

    , Article Energies ; Volume 14, Issue 1 , 2021 ; 19961073 (ISSN) Alimoradi, H ; Soltani, M ; Shahali, P ; Moradi Kashkooli, F ; Larizadeh, R ; Raahemifar, K ; Adibi, M ; Ghasemi, B ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    In this study, a numerical and empirical scheme for increasing cooling tower performance is developed by combining the particle swarm optimization (PSO) algorithm with a neural network and considering the packing’s compaction as an effective factor for higher accuracies. An experimental setup is used to analyze the effects of packing compaction on the performance. The neural network is optimized by the PSO algorithm in order to predict the precise temperature difference, efficiency, and outlet temperature, which are functions of air flow rate, water flow rate, inlet water temperature, inlet air temperature, inlet air relative humidity, and packing compaction. The effects of water flow rate,... 

    Performance optimization of a new flash-binary geothermal cycle for power/hydrogen production with zeotropic fluid

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 145, Issue 3 , 2021 , Pages 1633-1650 ; 13886150 (ISSN) Almutairi, K ; Hosseini Dehshiri, S ; Mostafaeipour, A ; Issakhov, A ; Techato, K ; Arockia Dhanraj, J ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    In this study, the performance of a system consisting of an organic Rankine cycle (ORC) for generating power and an electrolyzer for producing hydrogen with a zeotropic mixture as working fluid to recover waste heat in a geothermal flash-binary cycle is investigated from energy and exergy point of view. The study also investigates the effect of using zeotropic mixtures with different compositions as the ORC's working fluid rather than pure fluids. Using the particle swarm optimization (PSO) algorithm, the optimization is performed to maximize the power production of the entire system. The results show that using the combination of pentane with other pure fluids as working fluid led to... 

    Estimation of PC-SAFT binary interaction coefficient by artificial neural network for multicomponent phase equilibrium calculations

    , Article Fluid Phase Equilibria ; Volume 510 , 2020 Abbasi, F ; Abbasi, Z ; Bozorgmehry Boozarjomehry, R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Perturbed-Chain Statistical Associating Fluid Theory Equation of State (PC-SAFT EoS) requires cross interaction parameter for each binary pair in the mixture. For real mixtures, these parameters should be corrected by binary interaction coefficients (kij's). The values of kij's are tuned by an optimization method in order to minimize the deviation from equilibrium data. The Particle Swarm Optimization (PSO) algorithm is employed for optimization of kij's due to the continuous nature of kij and highly nonlinear nature of PC-SAFT EoS. Although kij can be adjusted using the mentioned algorithm, it is cumbersome and highly time-consuming because the optimization should be performed for each pair... 

    Development of a new features selection algorithm for estimation of NPPs operating parameters

    , Article Annals of Nuclear Energy ; Volume 146 , October , 2020 Moshkbar Bakhshayesh, K ; Ghanbari, M ; Ghofrani, M. B ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    One of the most important challenges in target parameters estimation via model-free methods is selection of the most effective input parameters namely features selection (FS). Indeed, irrelevant features can degrade the estimation performance. In the current study, the challenge of choosing among the several plant parameters is tackled by means of the innovative FS algorithm named ranking of features with minimum deviation from the target parameter (RFMD). The selected features accompanied with the stable and the fast learning algorithm of multilayer perceptron (MLP) neural network (i.e. Levenberg-Marquardt algorithm) which is a combination of gradient descent and Gauss-newton learning... 

    Heat transfer and fluid flow for tube included a porous media: Assessment and Multi-Objective Optimization Using Particle Swarm Optimization (PSO) Algorithm

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 545 , 2020 Keykhah, S ; Assareh, E ; Moltames, R ; Izadi, M ; Ali, H. M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Increasing efficiency, improving energy consumption, and optimizing energy in industries are more than ever considered by researchers. Some methods such as nanoparticles use and porous medium are used to increase the heat transfer rate. For this reason, in this paper, simulation and optimization of a two-dimensional tube with the presence of water–silver nanofluid and porous media have been performed to improve heat transfer. Different profiles of the rate, pressure, and temperature of the two-dimensional tube at volume fraction, porosity coefficient and Darcy numbers have been obtained and finally, the results are compared. Then, the Nusselt number and the friction coefficient in the range... 

    A stochastic well-test analysis on transient pressure data using iterative ensemble Kalman filter

    , Article Neural Computing and Applications ; Volume 31, Issue 8 , 2019 , Pages 3227-3243 ; 09410643 (ISSN) Bazargan, H ; Adibifard, M ; Sharif University of Technology
    Springer London  2019
    Abstract
    Accurate estimation of the reservoir parameters is crucial to predict the future reservoir behavior. Well testing is a dynamic method used to estimate the petro-physical reservoir parameters through imposing a rate disturbance at the wellhead and recording the pressure data in the wellbore. However, an accurate estimation of the reservoir parameters from well-test data is vulnerable to the noise at the recorded data, the non-uniqueness of the obtained match, and the accuracy of the optimization algorithm. Different stochastic optimization methods have been applied to this address problem in the literature. In this study, we apply the recently developed iterative ensemble Kalman filter in the... 

    A robust simulation optimization algorithm using kriging and particle swarm optimization: application to surgery room optimization

    , Article Communications in Statistics: Simulation and Computation ; 2019 ; 03610918 (ISSN) Azizi, M. J ; Seifi, F ; Moghadam, S ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    Simulation optimization is an endeavor to determine the best combination of inputs that result in the best system performance criterion without evaluating all possible combinations. Since simulation optimization applies to many problems, it is extensively studied in the literature with different methods. However, most of these methods ignore the uncertainty of the systems’ parameters, which may lead to a solution that is not robustly optimal in reality. Motivated by this uncertainty, we propose a robust simulation optimization algorithm that follows the well-known Taguchi standpoint but replaces its statistical technique with a minimax method based on the kriging (Gaussian process)... 

    A robust simulation optimization algorithm using kriging and particle swarm optimization: Application to surgery room optimization

    , Article Communications in Statistics: Simulation and Computation ; 2019 ; 03610918 (ISSN) Azizi, M. J ; Seifi, F ; Moghadam, S ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    Simulation optimization is an endeavor to determine the best combination of inputs that result in the best system performance criterion without evaluating all possible combinations. Since simulation optimization applies to many problems, it is extensively studied in the literature with different methods. However, most of these methods ignore the uncertainty of the systems’ parameters, which may lead to a solution that is not robustly optimal in reality. Motivated by this uncertainty, we propose a robust simulation optimization algorithm that follows the well-known Taguchi standpoint but replaces its statistical technique with a minimax method based on the kriging (Gaussian process)... 

    The potential application of particle swarm optimization algorithm for forecasting the air-overpressure induced by mine blasting

    , Article Engineering with Computers ; Volume 34, Issue 2 , 2018 , Pages 277-285 ; 01770667 (ISSN) Aminshokravi, A ; Eskandar, H ; Mahmodi Derakhsh, A ; Nikafshan Rad, H ; Ghanadi, A ; Sharif University of Technology
    Springer London  2018
    Abstract
    In tunneling projects and open-pit mines, drilling and blasting is a common method for fragmenting the rock masses. Although fragmentation is the main aim of blasting, the adverse effects such as air-overpressure (AOp) and ground vibration are unavoidable. Among these unwanted effects, AOp is considered as one of the most important effects which can cause damage to nearby structures. Therefore, precise estimation of AOp is required for minimizing the environmental problems. This article proposes three new models for predicting blast-induced AOp at Shur river dam area, Iran, optimized by particle swarm optimization (PSO). For this aim, 80 blasting events were investigated and the requirement... 

    Bi-objective optimization of a three-echelon multi-server supply-chain problem in congested systems: Modeling and solution

    , Article Computers and Industrial Engineering ; Volume 99 , 2016 , Pages 41-62 ; 03608352 (ISSN) Maghsoudlou, H ; Rashidi Kahag, M ; Akhavan Niakib. S. T ; Pourvaziri, H ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    A novel bi-objective three-echelon supply chain problem is formulated in this paper in which cross-dock facilities to transport the products are modeled as an M/M/m queuing system. The proposed model is validated using the epsilon constraint method when applied to solve some small-size problems. Since the problem belongs to the class of NP-hard and that it is of a bi-objective type, a multi-objective particle swarm optimization (MOPSO) algorithm with a new solution structure that satisfies all of the constraints is developed to find Pareto solutions. As there is no benchmark available in literature, three other multi-objective meta-heuristic algorithms called non-dominated ranking genetic... 

    A novel PSO (Particle Swarm Optimization)-based approach for optimal schedule of refrigerators using experimental models

    , Article Energy ; Volume 107 , 2016 , Pages 707-715 ; 03605442 (ISSN) Farzamkia, S ; Ranjbar, H ; Hatami, A ; Iman Eini, H ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Refrigerators have considerable share of residential consumption. They can be, however, flexible loads because their operating time and consumption patterns can be changed to some extent. Accordingly, they can be selected as a target for the study of Demand Side Management plans. In this paper, two experimental models for a refrigerator are derived. In obtaining the first model, following assumptions are made: the ambient temperature of refrigerator is assumed to be constant and the refrigerator door is remained closed. However, in the second model the variation of ambient temperature and door-opening effects are considered according to some general patterns. Further, two strategies are... 

    Launch vehicle multi-objective reliability-redundancy optimization using a hybrid genetic algorithm-particle swarm optimization

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 229, Issue 10 , Nov , 2015 , Pages 1785-1797 ; 09544100 (ISSN) Raouf, N ; Pourtakdoust, S. H ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    This paper focuses on multi-objective reliability optimization of a two-stage launch vehicle using a hybridized Genetic Algorithm-Particle Swarm Optimization with provisions of relative weighting between the objectives. In this respect, the launch vehicle key subsystems as well as their functions are initially introduced. Subsequently, the system reliability block diagram is constructed using the launch vehicle working order of the subsystems augmented with the requirements for a robust fault/failure tolerant design and performance. Next, based on the proposed reliability block diagram arrangement a bi-objective optimization is formulated to maximize the system reliability while minimizing... 

    Multi-objective geometrical optimization of full toroidal CVT

    , Article International Journal of Automotive Technology ; Volume 14, Issue 5 , 2013 , Pages 707-715 ; 12299138 (ISSN) Delkhosh, M ; Saadat Foumani, M ; Sharif University of Technology
    2013
    Abstract
    The objective of this research is geometrical and kinematical optimization of full-toroidal continuously variable transmission (CVT) in order to achieve high power transmission efficiency and low mass. At first, a dynamic analysis is performed for the system. A computer model is developed to simulate elastohydrodynamic (EHL) contact between disks and roller and consequently, calculate CVT efficiency. The validity of EHL model is investigated by comparing output of this model and experimental data. Geometrical parameters are obtained by means of Particle Swarm Optimization algorithm, while the optimization objective is to maximize CVT efficiency and minimize its mass. The algorithm is run for... 

    Stabilization of DC microgrids with constant-power loads by an active damping method

    , Article PEDSTC 2013 - 4th Annual International Power Electronics, Drive Systems and Technologies Conference ; 2013 , Pages 471-475 ; 9781467344845 (ISBN) Ashourloo, M ; Khorsandi, A ; Mokhtari, H ; Sharif University of Technology
    2013
    Abstract
    High penetration of constant-power loads (CPL) in dc microgrids may cause a destabilizing effect on the system that can lead to severe voltage oscillations. This paper addresses stability problems of the CPLs and proposes a simple active damping technique to damp the oscillations caused by CPLs. The particle swarm optimization algorithm has been used to find the best values of the parameters of the proposed active damper to achieve maximum damping of the oscillations. The effectiveness of the proposed approach is verified by simulations