Loading...
Search for: performance-assessment
0.008 seconds
Total 236 records

    A rule-based advanced static var compensator control scheme for transient stability improvement

    , Article Scientia Iranica ; Volume 13, Issue 4 , 2006 , Pages 327-336 ; 10263098 (ISSN) Abazari, S ; Ehsan, M ; Zolghadri, M. R ; Mahdavi, J ; Sharif University of Technology
    Sharif University of Technology  2006
    Abstract
    The paper presents the application of a rule- based control scheme for an Advanced Static Var Compensator (ASVC) to improve power system transient stability. The proposed method uses a current reference, based on the Transient Energy Function (TEF) approach. The proposed scheme provides, also, a continuous control of the reactive power flow. The performance of the proposed approach is compared with that of a system using a conventional control method and of a system without ASVC. A single-machine system and an IEEE three machine system are used to verify the performance of the proposed method. © Sharif University of Technology  

    Performance of the general circulation models in simulating temperature and precipitation over Iran

    , Article Theoretical and Applied Climatology ; 2018 , Pages 1-19 ; 0177798X (ISSN) Abbasian, M ; Moghim, S ; Abrishamchi, A ; Sharif University of Technology
    Springer-Verlag Wien  2018
    Abstract
    General Circulation Models (GCMs) are advanced tools for impact assessment and climate change studies. Previous studies show that the performance of the GCMs in simulating climate variables varies significantly over different regions. This study intends to evaluate the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs in simulating temperature and precipitation over Iran. Simulations from 37 GCMs and observations from the Climatic Research Unit (CRU) were obtained for the period of 1901–2005. Six measures of performance including mean bias, root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), linear correlation coefficient (r), Kolmogorov-Smirnov... 

    Performance of the general circulation models in simulating temperature and precipitation over Iran

    , Article Theoretical and Applied Climatology ; Volume 135, Issue 3-4 , 2019 , Pages 1465-1483 ; 0177798X (ISSN) Abbasian, M ; Moghim, S ; Abrishamchi, A ; Sharif University of Technology
    Springer-Verlag Wien  2019
    Abstract
    General Circulation Models (GCMs) are advanced tools for impact assessment and climate change studies. Previous studies show that the performance of the GCMs in simulating climate variables varies significantly over different regions. This study intends to evaluate the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs in simulating temperature and precipitation over Iran. Simulations from 37 GCMs and observations from the Climatic Research Unit (CRU) were obtained for the period of 1901–2005. Six measures of performance including mean bias, root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), linear correlation coefficient (r), Kolmogorov-Smirnov... 

    Development of a model to assess environmental performance, concerning HSE-MS principles

    , Article Environmental Monitoring and Assessment ; Volume 165, Issue 1-4 , June , 2010 , Pages 517-528 ; 01676369 (ISSN) Abbaspour, M ; Hosseinzadeh Lotfi, F ; Karbassi, A. R ; Roayaei, E ; Nikoomaram, H ; Sharif University of Technology
    2010
    Abstract
    The main objective of the present study was to develop a valid and appropriate model to evaluate companies' efficiency and environmental performance, concerning health, safety, and environmental management system principles. The proposed model overcomes the shortcomings of the previous models developed in this area. This model has been designed on the basis of a mathematical method known as Data Envelopment Analysis (DEA). In order to differentiate high-performing companies from weak ones, one of DEA nonradial models named as enhanced Russell graph efficiency measure has been applied. Since some of the environmental performance indicators cannot be controlled by companies' managers, it was... 

    Unsteady flow over offshore wind turbine airfoils and aerodynamic loads with computational fluid dynamic simulations

    , Article International Journal of Environmental Science and Technology ; Volume 13, Issue 6 , 2016 , Pages 1525-1540 ; 17351472 (ISSN) Abbaspour, M ; Radmanesh, A. R ; Soltani, M. R ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies 
    Abstract
    The first notable megawatt class wind turbine, which was the pioneer of improvement in the blade performance in large wind turbines, appeared in Vermont. Nowadays, modern wind turbines are using blades with multi-airfoils at different sections. In this study, in order to indicate the best airfoil profile for the optimum performance in different sections of a blade, five popular airfoils, including S8xx, FFA and AH series, were studied. On the large-scale profile, shear stress transport K–ω model was applied for the simulation of horizontal axis wind turbines for different wind speeds. The aerodynamic simulation was accomplished using computational fluid dynamic method, which in turn is based... 

    Developing three dimensional potential solver for investigation of propulsion performance of rigid and flexible oscillating foils

    , Article Ocean Engineering ; Volume 147 , 2018 , Pages 121-131 ; 00298018 (ISSN) Abbaspour, M ; Najafi, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Heave and pitch motion of an oscillating airfoil in uniform flow will cause generation of forwarding thrust. Applying a combination of these two motions on flexible foil, one can increase thrust and therefore the efficiency. This is the way that most fishes and other flying animals uses to consume less energy. In this paper, hydrodynamic forces and efficiency of an oscillating airfoil is investigated. A code is developed based on potential flow formulation in combination with Time Stepping Method (TSM) with nonlinear free shear layer dynamic approach to predict the wake behind the lifting bodies. A linear Morino type Kutta condition has been implemented on panels adjacent to trailing edge.... 

    Development of the group malmquist productivity index on non-discretionary factors

    , Article International Journal of Environmental Research ; Volume 3, Issue 1 , 2009 , Pages 109-116 ; 17356865 (ISSN) Abbaspour, M ; Hosseinzadeh Lofti, F ; Karbassi, A. R ; Roayaei, E ; Nikoomaram, H ; Sharif University of Technology
    2009
    Abstract
    Data envelopment analysis (DEA) measures the relative efficiency of a homogenous set of decision-making units (DMUs) when multiple inputs and outputs are present. The DEA-based Malmquist productivity index measuring the productivity change of DMUs over time has proven itself to be a valid tool to compare group performance. However, in the previous models developed for this purpose, it was supposed that all factors were controllable or discretionary. It is noteworthy that in most real cases, there are some inputs and outputs that are non-discretionary or semi-discretionary. Therefore, the main objective of the present study was to develop the DEA-based Malmquist productivity index on such... 

    Synthesis of mesoporous TiO2 structures through P123 copolymer as the structural directing agent and assessment of their performance in dye-sensitized solar cells

    , Article Solar Energy ; Volume 133 , 2016 , Pages 24-34 ; 0038092X (ISSN) Abdolahi Sadatlu, M. A ; Mozaffari, N ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    A novel and efficacious strategy was implemented for creation of mesoporous TiO2 films and powder through an integration of sol-gel and evaporation-induced self-assembly (EISA) processes aided by triblock Pluronic P123. A mesoporous crack-free thin film with virtual thickness of 300 nm was attained under 10% relative humidity aging, for 72 h at the low temperature of 5 °C. Further, the TiO2 film with porous structure has been formed from conventional paste, exploiting as-prepared mesoporous titania powder. The X-ray Diffraction (XRD) of synthesized mesoporous powder disclosed formation of anatase phase as well as rutile phase, in such a manner that the latter constituted a very small... 

    Adsorption properties of halloysite modified acrylamide/quince seeds-based hydrogel: Experimental and DFT investigation

    , Article Journal of Polymers and the Environment ; Volume 30, Issue 11 , 2022 , Pages 4637-4650 ; 15662543 (ISSN) Abdollahizad, G ; Mirzaee Valadi, F ; Akbarzadeh, E ; Gholami, M. R ; Sharif University of Technology
    Springer  2022
    Abstract
    In this work Halloysite nanotubes were used to synthesis a series of modified acrylamide/Quince seeds-based hydrogels (Poly (AAm-co-QS)/Haln). The as-prepared Poly (AAm-co-QS)/Haln hydrogels displayed improved performance as adsorbent in elimination of methylene blue (MB) from aqueous solution. The structures of the prepared Poly (AAm-co-QS)/Haln hydrogels were identified by XRD, FT-IR, FE-SEM, BET, TGA and EDX. Effect of pH value on the swelling behavior and dye adsorption performance of as-prepared hydrogels was explored. The adsorption MB results suggested that the adsorption kinetics fitted the pseudo-second-order model. The adsorption experiments at various pH condition indicated that... 

    The role of co-solvents in improving the direct transesterification of wet microalgal biomass under supercritical condition

    , Article Bioresource Technology ; Volume 193 , October , 2015 , Pages 90-96 ; 09608524 (ISSN) Abedini Najafabadi, H ; Vossoughi, M ; Pazuki, G ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this research, direct conversion of wet algal biomass into biodiesel using supercritical methanol was studied. In this process, microalgal lipids simultaneously was extracted and converted to biodiesel under high pressure and temperature conditions without using any catalyst. Several experiments have been performed to optimize the methanol amount and it has been revealed that the best performance was achieved by using methanol/wet biomass ratio of 8:1. The effect of using various co-solvents in increasing the efficiency of the supercritical process was investigated. It has been shown that hexane was the most effective co-solvent and its optimal ratio respect to wet biomass was 6:1. The... 

    Experimental modeling of twin-entry radial turbine

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 32, Issue 6 , December , 2008 , Pages 571-584 ; 10286284 (ISSN) Aghaali, H ; Hajilouy Benisi, A ; Sharif University of Technology
    2008
    Abstract
    In this paper the performance characteristics of a turbocharger twin-entry radial inflow gas turbine with asymmetrical volute and rotor tip diameter of 73.6 mm in steady state and under full and partial admission conditions are investigated. The employed method is based on one dimensional performance prediction which is developed for partial admission conditions. Furthermore, this method is developed for the asymmetrical volute of the turbine considering the flow specifications. Experimental investigation of the research was carried out on special test facilities under full and partial admission conditions for a wide range of speeds. A comparison of experimental and modeling results shows... 

    Using Web-GIS technology as a smart tool for resiliency management to monitor wind farms performances (Ganjeh site, Iran)

    , Article International Journal of Environmental Science and Technology ; Volume 16, Issue 9 , 2019 , Pages 5011-5022 ; 17351472 (ISSN) Aghajani, D ; Abbaspour, M ; Radfar, R ; Mohammadi, A ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2019
    Abstract
    Considering the wide spread locations of wind farms in Iran, it is important to develop a suitable decision support system (DSS) to fulfill proper management of wind farms. Extensive literature survey indicates that there are no integrated forms of DSS to manage a set of wind farms. The existing wind farms are performing independently, and there is no practical method for exchanging the online data. DSS can contribute to optimal operation of wind farms, operation and maintenance scheduling, pricing policy, etc. In this study, a geographic information system and RETSCREEN software were linked to the designed DSS to achieve a more suitable result. Also, a huge number of data are constantly... 

    Amplitude reconstruction of clipped OFDM by using DFT-based least squares

    , Article Scientia Iranica ; Volume 24, Issue 3 , 2017 , Pages 1353-1362 ; 10263098 (ISSN) Ahmadi, A ; Talebi, S ; Sharif University of Technology
    Abstract
    OFDM is an effective multicarrier transmission technique with one primary disadvantage; it suffers from high Peak-to-Average Power Ratio (PAPR). Although clipping and filtering is a simple and effective method for PAPR reduction, it makes in-band and out-of-band noise, which degrades the bit error rate performance and spectral efficiency. Publications on this subject show that clipped samples could be reconstructed at the receiver by using oversampled signal and bandwidth expansion. By building on published literature, this paper aims to achieve a low-complexity method. The proposed method has complexity order of O(L2) to solve linear system, where L indicates the number of clipped samples.... 

    Three-dimensional numerical analysis of corner effect of an excavation supported by ground anchors

    , Article International Journal of Geotechnical Engineering ; Volume 16, Issue 7 , 2022 , Pages 903-915 ; 19386362 (ISSN) Ahmadi, A ; Ahmadi, M. M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    This paper presents a case study and numerical simulations of a corner of a deep excavation in Tehran supported by soldier piles and ground anchors. This study focuses on the differences between 2D and 3D numerical modelling in estimating the wall deflection at the corner locations of the excavation. Furthermore, the performance of modelling with Mohr–Coulomb constitutive law was compared with the result of a hardening soil model. The modelling procedure was calibrated against a full-scale instrumented tieback wall at Texas A&M University and the monitoring data of the excavation project. The results indicated that the hardening soil model yields reasonable predictions of wall deflection in... 

    Performance analysis of time-hopping ultra-wideband systems in multipath fading channels (Uncoded and coded schemes)

    , Article Scientia Iranica ; Volume 13, Issue 1 , 2006 , Pages 67-77 ; 10263098 (ISSN) Ahmadi, H. R ; Nasiri Kenari, M ; Shayesteh, M. G ; Sharif University of Technology
    Sharif University of Technology  2006
    Abstract
    In this paper, the performances of both uncoded and coded multiple access TH-UWB systems, introduced in [1-3] in multipath Rayleigh fading channels, are evaluated. The receiver is a selective diversity combining receiver, known as SRake. Based on a Gaussian distribution assumption for the multiple access interference at the output of the SRake receiver and by using a virtual branch technique, as introduced in [4,5], the bit error rates for uncoded and coded schemes are derived. The performance analysis shows that the effective order of diversity achieved by the coded scheme is the product of the number of branches of the SRake receiver and the Hamming distance of the code applied.... 

    Performance of a standalone wind-hydrogen power system for regions with seasonal wind profile: A case study in Khaf region

    , Article Sustainable Energy Technologies and Assessments ; Vol. 7 , September , 2014 , pp. 265-278 ; ISSN: 22131388 Ahmadi, S ; Rezaei Mirghaed, M ; Roshandel, R ; Sharif University of Technology
    Abstract
    The present study was aimed at performance and energy analysis of a hybrid wind-hydrogen power system. Such system consists of wind turbines, batteries for the short time energy storage, electrolyzer, fuel cell and hydrogen tank for long time energy storage. The proposed configuration is used to supply energy demand of a region with discrete seasonal wind speed regime. Temporary wind energy profiles restrict using batteries for electricity storage as they lose much electrical stored energy for the long time. Based on direct wind turbine usage, batteries and hydrogen storage, different energy supply strategies are introduced and analyzed to power the household electricity demand. The energy... 

    Performance-based seismic design and assessment of low-rise steel special moment resisting frames with block slit dampers using endurance time method

    , Article Engineering Structures ; Volume 224 , 2020 Ahmadie Amiri, H ; Pournamazian Najafabadi, E ; Esmailpur Estekanchi, H ; Ozbakkaloglu, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Block Slit Dampers (BSDs) are recently developed metallic yielding dampers for passive structural control. This type of damping devices can provide designers with an option of using highly ductile systems, such as steel special moment resisting frames (steel SMRFs), in important structures located in regions of high seismicity. The aim of this study is to obtain a performance-based seismic design (PBSD) procedure for these devices, and to assess the seismic performance levels of low-rise steel SMRF equipped with BSDs using the endurance time (ET) dynamic analysis method. For this purpose, first, the simplified behavioral model of these devices was established based on the analysis of... 

    Investigation of time-frequency analysis and transitional boundary layer over a pitching airfoil

    , Article Scientia Iranica ; Volume 28, Issue 2 B , 2021 , Pages 860-876 ; 10263098 (ISSN) Akhlaghi, H ; Soltani, M. R ; Maghrebi, M. J ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Transitional boundary layer over a pitching airfoil at low Reynolds number (Re = 2:7 × 105) is experimentally investigated using space-frequency and time-frequency analyses of hot- film signals. Boundary layer events are visualized based on the space-frequency and time-frequency plots. The precursor phenomenon for turbulent and fully separated flows is presented based on the time-frequency analysis. A new technique based on time-frequency analysis of hot- film signals is introduced to measure the transition onset and relaminarization locations. This technique functions based on the analysis of high-frequency disturbances of the measured data. Significant attention has been drawn to the... 

    Investigation of time-frequency analysis and transitional boundary layer over a pitching airfoil

    , Article Scientia Iranica ; Volume 28, Issue 2 B , 2021 , Pages 860-876 ; 10263098 (ISSN) Akhlaghi, H ; Soltani, M. R ; Maghrebi, M. J ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Transitional boundary layer over a pitching airfoil at low Reynolds number (Re = 2:7 × 105) is experimentally investigated using space-frequency and time-frequency analyses of hot- film signals. Boundary layer events are visualized based on the space-frequency and time-frequency plots. The precursor phenomenon for turbulent and fully separated flows is presented based on the time-frequency analysis. A new technique based on time-frequency analysis of hot- film signals is introduced to measure the transition onset and relaminarization locations. This technique functions based on the analysis of high-frequency disturbances of the measured data. Significant attention has been drawn to the... 

    Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids

    , Article Energy ; Volume 227 , 2021 ; 03605442 (ISSN) Akram, N ; Montazer, E ; Kazi, S. N ; Soudagar, M. E. M ; Ahmed, W ; Zubir, M. N. M ; Afzal, A ; Muhammad, M. R ; Ali, H. M ; Márquez, F. P. G ; Sarsam, W. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Covalently functionalized carbon nanoplatelets and non-covalent functionalized metal oxides nanoparticles (surfactant-treated) have been used to synthesize water-based nanofluids in this paper. To prove nanofluid stability, ultraviolet–visible (UV–vis) spectroscopy is used, and the results show that nanofluid is stable for sixty days for carbon and thirty days for metal oxides. The thermophysical properties are evaluated experimentally and validated with theoretical models. Thermal conductivities of f-GNPs, SiO2, and ZnO nanofluids are enhanced by 25.68%, 11.49%, and 15.42%, respectively. Lu-Li and Bruggeman's thermal conductivity models are correctly matched with the experimental data....