Loading...
Search for: permittivity
0.012 seconds
Total 49 records

    Waves in linear time-varying dielectric media

    , Article 16th European Conference on Antennas and Propagation, EuCAP 2022, 27 March 2022 through 1 April 2022 ; 2022 ; 9788831299046 (ISBN) Sotoodehfar, A ; Mirmoosa, M. S ; Tretyakov, S. A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this paper, focusing on the frequency domain, we write the constitutive relation and the Helmholtz equation for linear, dispersive, and inhomogeneous time-varying media. Next, by assuming spatial homogeneity, we simplify the equations and explain how to calculate dispersion curves (the angular frequency with respect to the wave vector) for propagating waves. Furthermore, we show that under the simplifying assumption of instantaneous response, the developed general approach provides the same dispersion curves as reported earlier for the dispersion-less model of time-varying dielectric media. We believe that this study is important for investigations of wave phenomena in time-varying media,... 

    Wave propagation in metallic slab waveguides undergoing arbitrary temporal variations of permittivity

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 1529-1533 ; 9781728115085 (ISBN) Chegnizadeh, M ; Memarian, M ; Mehrany, K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    A general and closed form solution of wave propagation in a metallic slab waveguide undergoing any arbitrary, time-varying function of permittivity is presented. The formulation is general and accurate to account for all temporal variations of permittivity. Parametric amplification and frequency conversion is demonstrated using this closed form formulation. Moreover, all results are validated and confirmed using full wave FDTD simulation. The in-house FDTD MATLAB code takes into account time variations of the permittivity  

    Unidirectional surface waves in bi-anisotropic media

    , Article IEEE Journal of Quantum Electronics ; Volume 54, Issue 6 , 2018 ; 00189197 (ISSN) Karimi, P ; Rejaei, B ; Khavasi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    We show theoretically that unidirectional surface waves can propagate on the surface of homogeneous bi-anisotropic layers with an anti-symmetric chirality tensor. These materials mimic the electromagnetic behavior of an anisotropic medium with gyrotropic permittivity and permeability tensors that operate on pseudo-electromagnetic fields. The unidirectional waves have transverse pseudo-electric or magnetic polarizations and pass through an obstacle without backscattering if the obstacle does not cause polarization change. The bi-anisotropic medium can be realized as a metamaterial comprising omega particles tailored to achieve the constitutive parameters desired. © 2018 IEEE  

    Tunable left-handed characteristics of ferrite rectangular waveguide periodically loaded with complementary split-ring resonators

    , Article IEEE Transactions on Magnetics ; Volume 49, Issue 8 , 2013 , Pages 4780-4784 ; 00189464 (ISSN) Ghalibafan, J ; Komjani, N ; Rejaei, B ; Sharif University of Technology
    2013
    Abstract
    We propose, for the first time, a tunable left-handed (LH) waveguide consisting of an array of complementary split-ring resonators built on the broad wall of a rectangular waveguide filled with ferrite material. The left-handed behavior is caused by the negative permittivity of the complementary split-ring resonators together with the negative permeability of the transversely magnetized ferrite. The electromagnetic behavior of this structure is studied by means of an equivalent circuit model. From this model, the dispersion relation of the guide is derived and validated numerically by the finite element method. It is shown that this structure has a left-handed frequency band that can be... 

    Time dependence of the surface plasmon resonance of copper nanorods

    , Article Journal of Physics Condensed Matter ; Volume 19, Issue 44 , 2007 ; 09538984 (ISSN) Azarian, A ; Iraji zad, A ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    2007
    Abstract
    Copper nanorods have been synthesized by electrodeposition with different lengths in porous polycarbonate (PCT) membranes with a pore diameter of 50nm and a thickness of 4νm. The PCT membranes were dissolved in dichloromethane (CH2Cl2) and the solvent was replaced by methanol solutions. Extinction peaks at 587, 581 and 574nm were observed for the Cu nanorods with aspect ratio R = 6,8 and 10 in methanol, respectively. Polarization of the molecules of the medium around the wires changes the dielectric constant of the medium. Hence, the wavelength of the extinction peaks does not shows good agreement with calculations that were done on basis of Gans' theory with nominal dielectric constant of... 

    The role of ion partitioning in electrohydrodynamic characteristics of soft nanofluidics: Inclusion of EDL overlap and steric effects

    , Article Chemical Engineering Science ; Volume 190 , 2018 , Pages 443-458 ; 00092509 (ISSN) Reshadi, M ; Saidi, M. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, we aim to account for the partitioning of finite sized ions and electric double layer (EDL) overlapping effects on the electrostatics and hydrodynamics of soft nanofluidics by stablishing a modified Poisson-Boltzmann (MPB) equation enjoying mean field approach. The application of the present MPB equation enables us to describe the interaction between the steric effect and electrostatic repulsion of EDL ions due to permittivity difference of polyelectrolyte layer (PEL) and electrolyte solution. Utilizing the Debye-Hückel approximation pertinent to low surface potentials, we analytically derive the solutions of electric potential and velocity profiles of mixed electroosmotic and... 

    Surface plasmon resonance of two-segmented Au-Cu nanorods

    , Article Nanotechnology ; Volume 19, Issue 41 , 2008 ; 09574484 (ISSN) Azarian, A ; Iraji Zad, A ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    2008
    Abstract
    Two-segmented gold-copper nanorods were electrodeposited inside the pores of polycarbonate track-etched membranes from two separate solutions. The PCT membranes were dissolved in dichloromethane (CH2Cl2) and the solvent was replaced by methanol solution. Optical absorption spectra of two-segmented Au-Cu nanorods dispersed in methanol showed two peaks which were related to the transverse mode of copper and the longitudinal mode of gold. By increasing the length of the gold segment, when the total length of both metals was fixed at 1 μm, the copper and gold peaks shifted to the blue and red wavelengths, respectively. We observed that the wavelengths of the extinction peaks are not in good... 

    Study of surface plasmon resonance of Cu@Cu2O core-shell nanoparticles by Mie theory

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 1 , 2009 ; 00223727 (ISSN) Ghodselahi, T ; Vesaghi, M. A ; Shafiekhani, A ; Sharif University of Technology
    2009
    Abstract
    Cu@Cu2O core-shell nanoparticles on a-C : H thin films are prepared by co-deposition of RF-sputtering and RF-PECVD. Samples with different copper concentrations are grown. The copper content of films increases with reduction in initial pressure and rises with increasing RF power. When the Cu/C ratio reaches 0.5, the surface plasmon resonance (SPR) peak that is a signature of the formation of Cu nanoparticles appears in visible spectra of these films. X-ray photoelectron spectroscopy (XPS) characterization indicates that the surface of the copper nanoparticles oxidizes when they are exposed to air. The results are indicative that the shell of the nanoparticle is mainly the Cu 2O phase that is... 

    Simultaneous measurements of the resistance and capacitance using a cylindrical sensor system

    , Article Modern Physics Letters B ; Volume 22, Issue 8 , 2008 , Pages 595-610 ; 02179849 (ISSN) Golnabi, H ; Azimi, P ; Sharif University of Technology
    2008
    Abstract
    In this article, the design and operation of a cylindrical capacitive sensor based on the dielectric reactance capacitance and conductance changes of the gap medium is reported. The proposed system was used to determine characteristics of different water liquids as a result of the capacitance and resistance variations. The air gap capacitance (dry signal) is measured and then by filling the gap with a liquid, the capacitance (wet signal) is monitored for different liquids. A reported sensor is used for the distilled, tap, boiled, and salt water measurements and the capacitance and resistance results are compared. A big difference of about 38.5 μF in the measured capacitance values for the... 

    Revised guided mode expansion on dispersive photonic media

    , Article Photonic and Phononic Crystal Materials and Devices IX, San Jose, CA, 27 January 2009 through 29 January 2009 ; Volume 7223 , 2009 ; 0277786X (ISSN) Eftekharian, A ; Sodagar, M ; Khoshnegar, M ; Khorasani, S ; Chamanzar, M. R ; Adibi, A ; Sharif University of Technology
    2009
    Abstract
    A novel plane-wave-based approach for analytical treatment of dispersive relation is developed and applied to analyze the behavior of electromagnetic waves in plasmonic-photonic-crystal slabs. Here Drude model is used for describing frequency dependent permittivity of plasma rods in host dielectric medium. In the present work, dispersion relation below and above the light line is calculated approximately by means of Maxwell-Garnett effective medium and Revised Plane Wave Method (RPWM). The eigen-functions are then used in Revised Guided Mode Expansion (RGME) as the set of orthonormal bases. Following this procedure, the accurate band structure is obtained. In these kind of methods there are... 

    Relativistic Gaussian laser beam self-focusing in collisional quantum plasmas

    , Article Laser and Particle Beams ; Volume 33, Issue 3 , 2015 , Pages 397-403 ; 02630346 (ISSN) Zare, S ; Rezaee, S ; Yazdani, E ; Anvari, A ; Sadighi Bonabi, R ; Sharif University of Technology
    Cambridge University Press  2015
    Abstract
    Propagation of Gaussian X-ray laser beam is presented in collisional quantum plasma and the beam width oscillation is studied along the propagation direction. It is noticed that due to energy absorption in collisional plasma, the laser energy drops to an amount less than the critical value of the self-focusing effect and consequently, the laser beam defocuses. It is found that the oscillation amplitude of the laser spot size enhances while passing through collisional plasma. For the greater values of collision frequency, the beam width oscillates with higher amplitude and defocuses in a shallower plasma depth. Also, it is realized that in a dense plasma environment, the laser self-focusing... 

    Propagation and refraction of left-handed plasmons on a semiconducting substrate covered by graphene

    , Article Optics Letters ; Volume 43, Issue 9 , 2018 , Pages 2010-2013 ; 01469592 (ISSN) Zivari, A. P ; Bagheri, A. M ; Rejaei, B ; Khavasi, A ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    We show that a plasmonic semiconductor substrate can support highly confined surface plasmons when it is covered by a graphene layer. This occurs when the imaginary part of graphene conductivity and real part of the effective permittivity of the surrounding medium become simultaneously negative. Full-wave electromagnetic simulations demonstrate the occurrence of negative refraction and two-dimensional lensing at the interface separating regions supporting conventional right-handed graphene plasmons and left-handed surface plasmon polaritons. © 2018 Optical Society of America  

    Precision photonic band structure calculation of Abrikosov periodic lattice in type-II superconductors

    , Article Physica C: Superconductivity and its Applications ; Volume 460-462 II, Issue SPEC. ISS , 2007 , Pages 1222-1223 ; 09214534 (ISSN) Kokabi, A ; Zandi, H ; Khorasani, S ; Fardmanesh, M ; Sharif University of Technology
    2007
    Abstract
    We have performed a numerical solution for band structure of an Abrikosov vortex lattice in type-II superconductors forming a periodic array in two dimensions for applications of incorporating the photonic crystals concept into superconducting materials with possibilities for optical electronics. The implemented numerical method is based on the extensive numerical solution of the Ginzburg-Landau equation for calculating the parameters of the two-fluid model and obtaining the band structure from the permittivity, which depends on the above parameters and the frequency. This is while the characteristics of such crystals highly vary with an externally applied static normal magnetic field,... 

    Piezoelectric behavior of Gamma-radiated nanocomposite hydrogel based on PVP-PEG-BaTiO3

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 276 , 2022 ; 09215107 (ISSN) GhaedRahmati, H ; Frounchi, M ; Dadbin, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This study aimed to evaluate the properties of nanocomposite hydrogel (NCH) based on poly (vinyl pyrrolidone) (PVP), poly (ethylene glycol) (PEG), and Barium titanate (BTNPs). Gamma radiation at various doses (25 kGy, 35 kGy) was employed to prepare cross-linked hydrogel. The effect of PVP concentration, PVP/PEG ratio, and BTNPs content, and irradiation dosage on gel content and swelling ratio of synthesized hydrogels were determined. The Flory-Rehner equation was employed to calculate the network parameters. The FTIR results indicate that the chemical structure was deformed through crosslinking PVP macromolecule radicals. The XRD spectra indicated the cubic phase of BTNPs particles and the... 

    Photonic band structure of isotropic and anisotropic Abrikosov lattices in superconductors

    , Article Physica C: Superconductivity and its Applications ; Volume 467, Issue 1-2 , December , 2007 , Pages 51-58 ; 09214534 (ISSN) Zandi, H ; Kokabi, A ; Jafarpour, A ; Khorasani, S ; Fardmanesh, M ; Adibi, A ; Sharif University of Technology
    2007
    Abstract
    We have performed a numerical solution for band structure of an Abrikosov vortex lattice in type-II superconductors forming a periodic array in two dimensions for applications of incorporating the photonic crystals concept into superconducting materials with possibilities for optical electronics. The implemented numerical method is based on the extensive numerical solution of the Ginzburg-Landau equation for calculating the parameters of the two-fluid model and obtaining the band structure from the permittivity for both orthogonal polarizations, which depends on the above parameters and the frequency. This is while the characteristics of such crystals highly vary with an externally applied... 

    Photonic band structure of abrikosov lattices in superconductors

    , Article Photonic Crystal Materials and Devices VI, San Jose, CA, 22 January 2007 through 25 January 2007 ; Volume 6480 , 2007 ; 0277786X (ISSN) Zandi, H ; Kokabi, A ; Jafarpour, A. A ; Khorasani, S ; Fardmanesh, M ; Adibi, A ; Sharif University of Technology
    2007
    Abstract
    We have performed a numerical solution for band structure of an Abrikosov vortex lattice in type-11 superconductors forming a periodic array in two dimensions for applications of incorporating the photonic crystals concept into superconducting materials with possibilities for optical electronics. The implemented numerical method is based on the extensive numerical solution of the Ginzburg-Landau equation for calculating the parameters of the two-fluid model and obtaining the band structure from the permittivity, which depends on the above parameters and the frequency. This is while the characteristics of such crystals highly vary with an externally applied static normal magnetic field,... 

    Oriented hyperlens based on passivated porous graphene phases for sub-diffraction visible imaging

    , Article Optical Materials Express ; Volume 11, Issue 9 , 2021 , Pages 2839-2853 ; 21593930 (ISSN) Sadeghi, M. N ; Yazdanfar, P ; Rashidian, B ; Sharif University of Technology
    The Optical Society  2021
    Abstract
    The performance of conventional imaging lenses, relying on the phase transformation of propagating waves, is impairing due to the aberration and diffraction limits. For imaging beyond the diffraction limit, different superlens designs have been proposed. Although subdiffraction resolution imaging in the near field has been realized by the superlenses with negative refractive index, magnification of the subwavelength objects into the far field has not been fulfilled. Imaging using “hyperlens” is promising to overcome the energy spreading associated with diffraction, by utilizing negative permittivity parallel to the optical axis, and positive permittivity perpendicular to it. Among various... 

    Non-reciprocity using quadrature-phase time-varying slab resonators

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 37, Issue 1 , 2020 , Pages 88-97 Chegnizadeh, M ; Memarian, M ; Mehrany, K ; Sharif University of Technology
    OSA - The Optical Society  2020
    Abstract
    In this paper, it is shown that non-reciprocity can be observed in time-varying media without employing spatiotemporal modulated permittivities. We show that by using only two one-dimensional Fabry–Perot slabs with time-periodic permittivities having quadrature-phase difference, it is possible to achieve considerable non-reciprocity in transmission at the incidence frequency. To analyze such a scenario, generalized transfer matrices are introduced to find the wave amplitudes of all harmonics in all space. The results are verified by in-house finite-difference time-domain simulations. Moreover, in order to have a simple model of such time-varying slab resonators, a time-perturbed coupled-mode... 

    Modified differential-transfer-matrix method for solution of one-dimensional linear inhomogeneous optical structures

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 22, Issue 7 , 2005 , Pages 1521-1528 ; 07403224 (ISSN) Eghlidi, M. H ; Mehrany, K ; Rashidian, B ; Sharif University of Technology
    Optical Society of American (OSA)  2005
    Abstract
    A new formulation for the solution of wave propagation in inhomogeneous optical systems, based on the extension of conventional differential-transfer matrices into modified differential-transfer matrices, is given. In justification of our proposed method, several examples are presented, and the greater accuracy of our modified differential transfer matrices compared with that of conventional differential-transfer matrices is observed in several cases. It is also shown that the modified differential-transfer-matrix method is accurate enough even in those cases that the conventional differential-transfer-matrix method fails to yield acceptable results. © 2005 Optical Society of America  

    Modeling of periodic array of cut-through slits with sinusoidal surface conductivity at the interfaces of an anisotropic medium

    , Article IEEE Transactions on Antennas and Propagation ; Volume 66, Issue 10 , 2018 , Pages 5630-5633 ; 0018926X (ISSN) Rahmani, B ; Mehrany, K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    A periodic arrangement of 1-D slits carved in a perfect electric conductor is investigated, and an equivalent model which features sinusoidal surface conductivity on its upper and lower interfaces is derived. Therefore, and in sheer contrast to all the previous attempts that were successful in mimicking only the zeroth-order diffracted waves, it is capable of emulating both specular and nonspecular diffraction orders. The accuracy of the model is verified by the full-wave simulations. The proposed model is used to study the sharp Fano-type extraordinary transmission resonances arising in the structure. The transmission spectrum near these resonances is derived in terms of Fano resonance...