Loading...
Search for: petroleum-reservoir-engineering
0.011 seconds
Total 197 records

    Evaluation of the interfacial activity of imidazolium-based ionic liquids and their application in enhanced oil recovery process

    , Article Journal of Molecular Liquids ; Volume 362 , 2022 ; 01677322 (ISSN) Hosseinzadeh Semnani, R ; Salehi, M. B ; Mokhtarani, B ; Sharifi, A ; Mirzaei, M ; Taghikhani, V ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Ionic liquids (ILs) are a growing trend in Enhanced Oil Recovery (EOR) studies as alternatives to commercial surfactants due to their environmentally friendly nature, and their resistance in harsh temperatures and salinities. ILs are customizable and come in an immense variety, and therefore, it is vital that different combinations of cation/anion be investigated for use in the industry. In this work, experiments are designed and performed to evaluate novel ILs’ surface activity and performance in a lab-scale EOR set-up, compatible with Iranian oil reservoir conditions. Three imidazolium-based ionic liquids were used, namely, butyl-methylimidazolium nitrate, hexyl-methylimidazolium nitrate,... 

    Impact of rock morphology on the dominating enhanced oil recovery mechanisms by low salinity water flooding in carbonate rocks

    , Article Fuel ; Volume 324 , 2022 ; 00162361 (ISSN) Farhadi, H ; Ayatollahi, S ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Because of the complex nature of carbonate reservoirs, the required conditions for effective Low Salinity Water Flooding (LSWF) in these reservoirs need further and in depth investigation. In the present study, three calcite cores, i.e. Cal-1, Cal-2, and IL, with the same chemical composition are subjected to tertiary low salinity water flooding (LSWF), while the crude oil and composition of flooding brine kept the same. The experimental results show significant difference in the amount of enhanced oil recovery, as IL had the most additional oil recovery (20.8 % of IOIP), followed by Cal-2 (10.5 % of IOIP) and Cal-1 (3.9 % of IOIP). The results of contact angle, zeta potential, and effluent... 

    Optimization of multilateral well trajectories using pattern search and genetic algorithms

    , Article Results in Engineering ; Volume 16 , 2022 ; 25901230 (ISSN) Ghadami, S ; Biglarian, H ; Beyrami, H ; Salimi, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Multilateral well is a promising technology in developing oil reservoirs. Because this technology may increase the production rate per well and reduce the costs of field development, it is rapidly replacing the old methods. This study uses a three-dimensional line-source model with direct search methods, including pattern search and genetic algorithms to optimize the well trajectories. This method was applied to several cases, with different forms of wells and reservoirs. In all cases, significant improvement was observed in the production rate. Furthermore, the production enhancement using the optimized well trajectories which have curved-paths is compared to the case with linear well... 

    Selective fabrication of robust and multifunctional super nonwetting surfaces by diverse modifications of zirconia-ceria nanocomposites

    , Article Langmuir ; Volume 38, Issue 30 , 2022 , Pages 9195-9209 ; 07437463 (ISSN) Esmaeilzadeh, P ; Zandi, A ; Ghazanfari, M. H ; Khezrnejad, A ; Fatemi, M ; Molaei Dehkordi, A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The creation of surfaces with various super nonwetting properties is an ongoing challenge. We report diverse modifications of novel synthesized zirconia-ceria nanocomposites by different low surface energy agents to fabricate nanofluids capable of regulating surface wettability of mineral substrates to achieve selective superhydrophobic, superoleophobic-superhydrophilic, and superamphiphobic conditions. Surfaces treated with these nanofluids offer self-cleaning properties and effortless rolling-off behavior with sliding angles ≤7° for several liquids with surface tensions between 26 and 72.1 mN/m. The superamphiphobic nanofluid coating imparts nonstick properties to a solid surface whereby... 

    Effect of permeability heterogeneity on the dissolution process during carbon dioxide sequestration in saline aquifers: two-and three-dimensional structures

    , Article Geomechanics and Geophysics for Geo-Energy and Geo-Resources ; Volume 8, Issue 2 , 2022 ; 23638419 (ISSN) Mahyapour, R ; Mahmoodpour, S ; Singh, M ; Omrani, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Abstract: The convection–diffusion process of carbon dioxide (CO2) dissolution in a saline reservoir is investigated to shed light on the effects of the permeability heterogeneity. Using sequential Gaussian simulation method, random permeability fields in two and three-dimension (2D and 3D) structures are generated. Quantitative (average amount of the dissolved CO2 and dissolution flux) and qualitative (pattern of the dissolved CO2 and velocity streamlines) measurements are used to investigate the results. A 3D structure shows a slightly higher dissolution flux than a 2D structure in the homogeneous condition. Results in the random permeability fields in 2D indicates an increase in the... 

    XFEM modeling of the effect of in-situ stresses on hydraulic fracture characteristics and comparison with KGD and PKN models

    , Article Journal of Petroleum Exploration and Production Technology ; 2022 ; 21900558 (ISSN) Esfandiari, M ; Pak, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Increasing the permeability of hydrocarbon reservoirs by creating artificial cracks that are induced by injection of fluids under high pressure is called hydraulic fracturing (HF). This method is widely used in petroleum reservoir engineering. For design of Hydraulic Fracture operations, several analytical models have been developed. KGD and PKN are the first and most used analytical models in this area. Although number of advanced softwares are developed in recent years, KGD and PKN models are still popular and have even been used in a number of softwares. In both models the characteristics of the fracture namely: fracture length (L), fracture width (w), and fluid pressure at the crack... 

    A Review on chemical sand production control techniques in oil reservoirs

    , Article Energy and Fuels ; 2022 ; 08870624 (ISSN) Saghandali, F ; Baghban Salehi, M ; Hosseinzadehsemnani, R ; Moghanloo, R. G ; Taghikhani, V ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    This review aims to bring together the studies on petroleum reservoirs' sand production control in a comprehensive guide for the researcher to compare various methods for the chemical consolidation of sand. Sand production can be considered one of the major challenges in the petroleum production industry, causing severe operational issues. This study introduces various methods to control and prevent sand production in petroleum wells and evaluates their advantages and performance in tabular form. The use of chemical procedures is considered to be more efficient in counteracting the production and migration of sand. Various chemicals and polymers have been proposed for this purpose. These... 

    Enhancing acid fracture design in carbonate formation using a dynamic up-scaling procedure to convert discrete fracture network to dual continuum

    , Article Petroleum Science and Technology ; Volume 40, Issue 18 , 2022 , Pages 2284-2304 ; 10916466 (ISSN) Kasiri Bidhendi, M. R ; Khorsand Movaghar, M. R ; Humand, M ; Bazargan, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    For a low-permeability carbonate formation, the acid fracture process is simulated through coupling a commercial acid fracture simulator (GOHFER) to a finite volume reservoir simulator (IMEX). Unlike LGR (Local grid refinement) approach that suffers from severe convergence problems, a dynamic up-scaling procedure is employed to convert the discrete fracture network (DFN) model into a dual continuum model for our simulation. In this paper, multiple simulations are used to optimize the acid fracture schedule parameters, such as fluid volume, flow rate, perforation location, number of injection steps, and acid type, in order to maximize the effective fracture length. For four points perforation... 

    Asphaltene destabilization in the presence of an aqueous phase: The effects of salinity, ion type, and contact time

    , Article Journal of Petroleum Science and Engineering ; Volume 208 , 2022 ; 09204105 (ISSN) Mokhtari, R ; Hosseini, A ; Fatemi, M ; Andersen, S. I ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    One of the possible fluid-fluid interactions during water-flooding in oil reservoirs, that is still debated, is the effect of injected brine salinity on asphaltene destabilization. If asphaltene precipitation is induced by salinity changes in the oil reservoirs and surface facilities, this could have a massive impact on the economy of a low salinity water-flooding project. Therefore, this study aims to investigate the effect of brine salinity on the amount of asphaltene precipitation and the governing destabilization mechanisms. Direct asphaltene precipitation measurements, along with the analyses of optical microscopy images and ion chromatography (IC), indicate that the asphaltene... 

    Numerical simulation of cold and hot water injection into naturally fractured porous media using the extended–FEM and an equivalent continuum model

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 46, Issue 3 , 2022 , Pages 617-655 ; 03639061 (ISSN) Mortazavi, S. M. S ; Pirmoradi, P ; Khoei, A. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    In this paper, a computational technique is presented for the isothermal and non-isothermal water injection into naturally fractured oil reservoirs. A remarkable number of naturally fractured reservoirs contain relatively heavy oils that could not be extracted economically; hence, the thermal recovery methods are extensively used for such reservoirs. In this study, the effectiveness of hot water injection over cold (isothermal) water injection in oil production is quantified. The influence of long and short fractures and their alignments on oil recovery are discussed. To this end, a 2D model for two-phase fluid flow and heat transfer is presented. The medium is assumed to be partially... 

    Assessment of two-phase relative permeability hysteresis models for oil/water, gas/water and gas/oil systems in mixed-wet porous media

    , Article Fuel ; Volume 309 , 2022 ; 00162361 (ISSN) Foroudi, S ; Gharavi, A ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Accurate determination of relative permeability curves and their hysteresis is vital for reliable prediction of the performance of oil and gas reservoirs under enhanced recovery processes. Two out of the three available approaches to simulate three-phase relative permeability hysteresis are based on two-phase hysteresis. A few options (e.g., Carlson, Killough and Jargon models) are available in commercial reservoir simulators to account for hysteresis in relative permeability curves under two-phase flow. These models are based on the assumptions of water-wet state of the rocks, while most of the reservoir rocks are mixed-wet. As a result the aim of the present work is to evaluate the... 

    Atomistic insight into the behavior of ions at an oil-bearing hydrated calcite surface: implication to ion-engineered waterflooding

    , Article Energy and Fuels ; Volume 35, Issue 16 , 2021 , Pages 13039-13054 ; 08870624 (ISSN) Badizad, M. H ; Koleini, M. M ; Greenwell, H. C ; Ayatollahi, S ; Ghazanfari, M. H ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    This research provides an atomistic picture of the role of ions in modulating the microstructural features of an oil-contaminated calcite surface. This is of crucial importance for the rational design of ion-engineered waterflooding, a promising technique for enhancing oil recovery from carbonate reservoirs. Inspired by a conventional lab-scale procedure, an integrated series of molecular dynamics (MD) simulations were carried out to resolve the relative contribution of the major ionic constituent of natural brines (i.e., Na+, Cl-, Mg2+, Ca2+, and SO42-) when soaking an oil-bearing calcite surface in different electrolyte solutions of same salinity, namely, CaCl2, MgCl2, Na2SO4, MgSO4, and... 

    A laboratory approach to enhance oil recovery factor in a low permeable reservoir by active carbonated water injection

    , Article Energy Reports ; Volume 7 , 2021 , Pages 3149-3155 ; 23524847 (ISSN) Chen, X ; Paprouschi, A ; Elveny, M ; Podoprigora, D ; Korobov, G ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, different injectivity scenarios were experimentally investigated in a coreflooding system to observe the efficiency of each method in laboratory conditions. Surfactant flooding, CO2 injection, carbonated water injection (CWI), active carbonated water injection (ACWI), after water flooding were investigated through the coreflooding system. First, it is necessary to optimize the surfactant concentration and then use it in ACWI injection. To do this, linear alkylbenzene sulfonic acid (LABSA) was used as a cationic surfactant at different concentrations. It was observed that 0.6 PV concentration of LABSA had an optimum result as increasing the surfactant concentration would not be... 

    Prediction of waterflood performance using a modified capacitance-resistance model: A proxy with a time-correlated model error

    , Article Journal of Petroleum Science and Engineering ; Volume 198 , 2021 ; 09204105 (ISSN) Mamghaderi, A ; Aminshahidy, B ; Bazargan, H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Capacitance-Resistive Model (CRM), as a fast yet efficient proxy model, suffers from some limitations in modeling relatively complex reservoirs. Some current improvements on this proxy made it a more powerful simulator with updating parameters over time. However, the model's intrinsic uncertainty arisen from simplifying fluid-flow modeling by some limited number of constant parameters is not addressed yet. In this study, this structural limitation of CRM has been addressed by introducing a time-correlated model error, including stochastic and non-stochastic parameters, embedded into this proxy's formulation. The error term's non-stochastic parameters have been tuned to be used in forecasting... 

    Experimental investigation on synergic effect of salinity and pH during low salinity water injection into carbonate oil reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 202 , 2021 ; 09204105 (ISSN) Mehraban, M. F ; Ayatollahi, S ; Sharifi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Interaction between rock-fluid and fluid-fluid can have a significant effect on oil recovery. Changing the wettability of reservoir rock toward more water-wet or less oil-wet state is one of the expected mechanisms during low salinity water injection (LSWI). pH and salinity are of the most eminent factors of injection water controlling the wettability state of a crude oil/brine/rock system during any waterflooding operation. A small change in pH can affect the surface charges at the rock/water and oil/water interfaces leading to wettability alteration in a porous medium. In this study, the synergic effect of salinity and pH on the wettability state of carbonate rocks is evaluated through... 

    Numerical simulation of cold and hot water injection into naturally fractured porous media using the extended–FEM and an equivalent continuum model

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; 2021 ; 03639061 (ISSN) Mortazavi, S. M. S ; Pirmoradi, P ; Khoei, A. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In this paper, a computational technique is presented for the isothermal and non-isothermal water injection into naturally fractured oil reservoirs. A remarkable number of naturally fractured reservoirs contain relatively heavy oils that could not be extracted economically; hence, the thermal recovery methods are extensively used for such reservoirs. In this study, the effectiveness of hot water injection over cold (isothermal) water injection in oil production is quantified. The influence of long and short fractures and their alignments on oil recovery are discussed. To this end, a 2D model for two-phase fluid flow and heat transfer is presented. The medium is assumed to be partially... 

    An innovative workflow for selecting appraisal area in low permeability greenfield development under uncertainties

    , Article Journal of Petroleum Science and Engineering ; Volume 206 , 2021 ; 09204105 (ISSN) Motahhari, S. M ; Rafizadeh, M ; Pishvaie, M. R ; Ahmadi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    There are uncertainties in both inherent geological properties and IOR/EOR performance parameters of low permeability greenfield reservoirs. Therefore, efforts to reduce uncertainties in the appraisal phase are necessary for the development and production phases. An adequate selection of the appraisal area in the hydrocarbon field is an imperative factor since the results of the appraisal well drilling and IOR/EOR pilot tests will be utilized for the development of the entire field. The major challenge in selecting an appraisal area is the lack of an integrated and systematic approach. In this study, we present a novel systematic and quantitative approach consisting of a better... 

    Simulation of two-phase flow by injecting water and surfactant into porous media containing oil and investigation of trapped oil areas

    , Article Journal of Petroleum Exploration and Production ; Volume 11, Issue 3 , 2021 , Pages 1353-1362 ; 21900558 (ISSN) Sajadi, S. M ; Jamshidi, S ; Kamalipoor, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Nowadays, as the oil reservoirs reaching their half-life, using enhanced oil recovery methods is more necessary and more common. Simulations are the synthetic process of real systems. In this study, simulation of water and surfactant injection into a porous media containing oil (two-phase) was performed using the computational fluid dynamics method on the image of a real micro-model. Also, the selected anionic surfactant is sodium dodecyl sulfate, which is more effective in sand reservoirs. The effect of using surfactant depends on its concentration. This dependence on concentration in using injection compounds is referred to as critical micelle concentration (CMC). In this study, an... 

    Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehpour, M ; Sakhaei, Z ; Salehinezhad, R ; Mahani, H ; Riazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    During the low salinity waterflooding (LSWF) of a viscous asphaltic oil reservoir, fluid-fluid interactions have a large influence on the fluid flow, pore-scale events, and thus oil recovery efficiency and behavior. In-situ water-in-oil (W/O) emulsion formation is a consequence of crude oil and brine interfacial activities. Despite the published studies, the pore-scale mechanisms of W/O emulsion formation and the role of injected brine salinity, injection rate, and pore-scale heterogeneity on emulsion formation and stability requires a deeper understanding. To address these, a series of static and dynamic micro-scale experiments were performed. The salinity dependent oil-brine interactions... 

    Analysis of well testing results for single phase flow in reservoirs with percolation structure

    , Article Oil and Gas Science and Technology ; Volume 76 , 2021 ; 12944475 (ISSN) Shahrian, E ; Masihi, M ; Sharif University of Technology
    Editions Technip  2021
    Abstract
    Constructing an accurate geological model of the reservoir is a preliminary to make any reliable prediction of a reservoir's performance. Afterward, one needs to simulate the flow to predict the reservoir's dynamic behaviour. This process usually is associated with high computational costs. Therefore, alternative methods such as the percolation approach for rapid estimation of reservoir efficiency are quite desirable. This study tries to address the Well Testing (WT) interpretation of heterogeneous reservoirs, constructed from two extreme permeabilities, 0 and K. In particular, we simulated a drawdown test on typical site percolation mediums, occupied to fraction "p"at a constant rate Q/h,...