Loading...
Search for: physiological-models
0.007 seconds
Total 39 records

    Multidimensional modeling of the stenosed carotid artery: A novel CAD approach accompanied by an extensive lumped model

    , Article Acta Mechanica Sinica/Lixue Xuebao ; Vol. 30, issue. 2 , 2014 , p. 259-273 Kashefi, A ; Mahdinia, M ; Firoozabadi, B ; Amirkhosravi, M ; Ahmadi, G ; Saidi, M. S ; Sharif University of Technology
    Abstract
    This study describes a multidimensional 3D/lumped parameter (LP) model which contains appropriate inflow/outflow boundary conditions in order to model the entire human arterial trees. A new extensive LP model of the entire arterial network (48 arteries) was developed including the effect of vessel diameter tapering and the parameterization of resistance, conductor and inductor variables. A computer aided-design (CAD) algorithm was proposed to efficiently handle the coupling of two or more 3D models with the LP model, and substantially lessen the coupling processing time. Realistic boundary conditions and Navier-Stokes equations in healthy and stenosed models of carotid artery bifurcation... 

    Hyperthermia-induced protein corona improves the therapeutic effects of zinc ferrite spinel-graphene sheets against cancer

    , Article RSC Advances ; Vol. 4, issue. 107 , 2014 , p. 62557-62565 Hajipour, M. J ; Akhavan, O ; Meidanchi, A ; Laurent, S ; Mahmoudi, M ; Sharif University of Technology
    Abstract
    Superparamagnetic zinc ferrite spinel-graphene nanostructures were synthesized as potential therapeutic agents in the magnetic targeted photothermal therapy of cancer and/or drug delivery. The global temperature of the solution and the local temperature at the nanoparticle (NP) surface determine the protein corona composition/content, which in turn affects the biological effects of NPs and the corresponding physiological responses. Therefore, it is rational to hypothesize that spinel-graphene nanostructures may have distinct protein corona compositions and contents, and therapeutic and toxic effects under laser irradiation. To assess this hypothesis, the effects of laser irradiation on the... 

    A robotic model of transfemoral amputee locomotion for design optimization of knee controllers

    , Article International Journal of Advanced Robotic Systems ; Volume 10 , 2013 ; 17298806 (ISSN) Shandiz, M. A ; Farahmand, F ; Osman, N. A. A ; Zohoor, H ; Sharif University of Technology
    2013
    Abstract
    A two-dimensional, seven link, nine degrees of freedom biped model was developed to investigate the dynamic characteristics of normal and transfemoral amputee locomotion during the entire gait cycle. The equations of motion were derived using the Lagrange method and the stance foot-ground contact was simulated using a five-point penetration model. The joint driving torques were obtained using forward dynamic optimization of the normal human gait and applied to the intact joints of the amputee. Three types of motion controllers; frictional, elastic and hydraulic were considered for the prosthetic joints of the amputee and their design parameters were optimized to achieve the closest... 

    A novel distributed model of the heart under normal and congestive heart failure conditions

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 227, Issue 4 , 2013 , Pages 362-372 ; 09544119 (ISSN) Ravanshadi, S ; Jahed, M ; Sharif University of Technology
    2013
    Abstract
    Conventional models of cardiovascular system frequently lack required detail and focus primarily on the overall relationship between pressure, flow and volume. This study proposes a localized and regional model of the cardiovascular system. It utilizes noninvasive blood flow and pressure seed data and temporal cardiac muscle regional activity to predict the operation of the heart under normal and congestive heart failure conditions. The analysis considers specific regions of the heart, namely, base, mid and apex of left ventricle. The proposed method of parameter estimation for hydraulic electric analogy model is recursive least squares algorithm. Based on simulation results and comparison... 

    Modelling and analysis of the effect of angular velocity and acceleration on brain strain field in traumatic brain injury

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 3 A , 2013 ; 9780791856215 (ISBN) Hoursan, H ; Ahmadian, M. T ; Barari, A ; Beidokhti, H. N ; Sharif University of Technology
    Abstract
    Traumatic brain injury (TBI) has long been known as one of the most anonymous reasons for death around the world. A presentation of a model of what happens in the process has been under study for many years; and yet it remains a question due to physiological, geometrical and computational complications. Although the facilities for soft tissue modeling have improved and the precise CT-imaging of human head has revealed novel details of brain, skull and the interface (the meninges), a comprehensive FEM model of TBI is still being studied. This study aims to present an optimized model of human head including the brain, skull, and the meninges after a comprehensive study of the previous models.... 

    Introducing a distributed model of the heart

    , Article Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 24 June 2012 through 27 June 2012 ; June , 2012 , Pages 419-424 ; 21551774 (ISSN) ; 9781457711992 (ISBN) Ravanshadi, S ; Jahed, M ; Sharif University of Technology
    2012
    Abstract
    Conventional models of cardiovascular system (CV) frequently lack required detail. Once utilized to study the heart function, these models focus primarily on the overall relationship between pressure, flow and volume. This study proposes a localized and regional model of the CV system. It utilizes non-invasive blood flow and pressure seed data and temporal cardiac muscle regional activation to predict the operation of the heart. Proposed localized analysis considers specific regions of the heart, namely base, mid and apex sections of the left ventricle. This modular system is based on a hydraulic electric analogy model, estimating desired parameters, namely resistance (R), compliance (C),... 

    A detailed and validated three dimensional dynamic model of the patellofemoral joint

    , Article Journal of Biomechanical Engineering ; Volume 134, Issue 4 , 2012 ; 01480731 (ISSN) Akbar, M ; Farahmand, F ; Jafari, A ; Foumani, M. S ; Sharif University of Technology
    2012
    Abstract
    A detailed 3D anatomical model of the patellofemoral joint was developed to study the tracking, force, contact and stability characteristics of the joint. The quadriceps was considered to include six components represented by 15 force vectors. The patellar tendon was modeled using four bundles of viscoelastic tensile elements. Each of the lateral and medial retinaculum was modeled by a three-bundle nonlinear spring. The femur and patella were considered as rigid bodies with their articular cartilage layers represented by an isotropic viscoelastic material. The geometrical and tracking data needed for model simulation, as well as validation of its results, were obtained from an in vivo... 

    A multiscale phase field method for joint segmentation-rigid registration application to motion estimation of human knee joint

    , Article Biomedical Engineering - Applications, Basis and Communications ; Volume 23, Issue 6 , 2011 , Pages 445-456 ; 10162372 (ISSN) Eslami, A ; Esfandiarpour, F ; Shakourirad, A ; Farahmand, F ; Sharif University of Technology
    2011
    Abstract
    Image based registration of rigid objects has been frequently addressed in the literature to obtain an object's motion parameters. In this paper, a new approach of joint segmentation-rigid registration, within the variational framework of the phase field approximation of the Mumford-Shah's functional, is proposed. The defined functional consists of two Mumford-Shah equations, extracting the discontinuity set of the reference and target images due to a rigid spatial transformation. Multiscale minimization of the proposed functional after finite element discretization provided a sub-pixel, robust algorithm for edge extraction as well as edge based rigid registration. The implementation... 

    Variations in trunk muscle activities and spinal loads following posterior lumbar surgery: A combined in vivo and modeling investigation

    , Article Clinical Biomechanics ; Volume 30, Issue 10 , 2015 , Pages 1036-1042 ; 02680033 (ISSN) Jamshidnejad, S ; Arjmand, N ; Sharif University of Technology
    Abstract
    Background Iatrogenic injuries to paraspinal muscles during posterior lumbar surgery cause a reduction in their contractile cross-sectional area and thus presumably their postoperative activation. This study investigates the effect of such intraoperative injuries on postoperative patterns of muscle activations and spinal loads during various activities using a combined modeling and in vivo MR imaging approach. Methods A three-dimensional, multi-joint, musculoskeletal model was used to estimate pre- and postoperative muscle forces and spinal loads under various activities in upright and flexed postures. According to our in vivo pre- and postoperative (∼ 6 months) measurements in six patients... 

    Dynamic simulation of the biped normal and amputee human gait

    , Article Mobile Robotics: Solutions and Challenges - Proceedings of the 12th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2009, 9 September 2009 through 11 September 2009, Istanbul ; 2010 , Pages 1113-1120 ; 9814291269 (ISBN) ; 9789814291262 (ISBN) Shandiz, M. A ; Farahmand, F ; Zohour, H ; Sharif University of Technology
    2010
    Abstract
    A two-dimensional seven link biped dynamic model was developed to investigate the mechanical characteristics of the normal and amputee locomotion during the complete gait cycle. The foot-ground contact was simulated using a five-point penetration contact model. The equations of motion were derived using Lagrange method. Optimization of the normal human walking model provided constant coefficients for the driving torque equations that could reasonably reproduce the normal kinematical pattern. The resulting torques were then applied to the intact joints of the amputee model with a prosthetic leg equipped with a kinematical driver controller for the ankle and either a hydraulic, elastic or... 

    Tracking the 3D configuration of human joint using an MR image registration technique

    , Article ASME 2010 5th Frontiers in Biomedical Devices Conference and Exhibition, BIOMED 2010, 20 September 2010 through 21 September 2010 ; 2010 , Pages 93-94 ; 9780791849453 (ISBN) Mostafavi Yazdi, S. K ; Farahmand, F ; Jafari, A ; Sharif University of Technology
    Abstract
    Surface registration is a necessary step and widely used in medical image-aided surgery. It's relevance to medical imaging is that there is much useful anatomical information in the form of collected surface points which originate from complimentary modalities. In this study, the kinematic relations between two point clouds with different coordinate definitions have been generated. Using Influence Method of surface modeling for extracting point clouds functions, the transformation matrix would be resulted. The proposed method was applied for an experimental femur data points(651 points) using the MRI images. These data points were transformed in a 30 degrees flexion of knee. This... 

    A new mathematical approach for detection of active area in human brain fMRI using nonlinear model

    , Article Biomedical Engineering - Applications, Basis and Communications ; Volume 22, Issue 5 , 2010 , Pages 409-418 ; 10162372 (ISSN) Taalimi, A ; Fatemizadeh, E ; Sharif University of Technology
    Abstract
    Functional magnetic resonance imaging (fMRI) is widely-used for detection of the brain's neural activity. The signals and images acquired through this imaging technique demonstrate the human brain's response to pre-scheduled tasks. Several studies on blood oxygenation level-dependent (BOLD) signal responses demonstrate nonlinear behavior in response to a stimulus. In this paper we propose a new mathematical approach for modeling BOLD signal activity, which is able to model nonlinear and time variant behaviors of this physiological system. We employ the Nonlinear Auto Regressive Moving Average (NARMA) model to describe the mathematical relationship between output signals and predesigned... 

    A Physiological model-based study of flow-mediated dilation in peripheral arteries using finger photoplethysmogram signal

    , Article 2017 24th Iranian Conference on Biomedical Engineering and 2017 2nd International Iranian Conference on Biomedical Engineering, ICBME 2017, 30 November 2017 through 1 December 2017 ; 2018 ; 9781538636091 (ISBN) Habib Parsafar, M ; Zahedi, E ; Vosoughi Vahdat, B ; Sharif University of Technology
    Abstract
    Flow-mediated dilation measurement in the brachial artery using ultrasound imaging (FMD-US) is a common noninvasive procedure for endothelial function evaluation in the peripheral arteries. As FMD-US is operator-dependent and involves onerous equipment, its use has been mostly confined to research settings. In this paper, we propose to use the more accessible finger photoplethysmogram signal in conjunction with the FMD test (FMD-PPG) as a surrogate method. To this end, a tube-load physiological model of the upper arterial path in the arm is developed. Signals acquired from young and elderly subjects (N=20) are then investigated using model parameter estimation by the genetic algorithm. Our... 

    Model-based fiducial points extraction for baseline wandered electrocardiograms

    , Article IEEE Transactions on Biomedical Engineering ; Volume 55, Issue 1 , 2008 , Pages 347-351 ; 00189294 (ISSN) Sayadi, O ; Shamsollahi, M. B ; Sharif University of Technology
    2008
    Abstract
    A fast algorithm based on the nonlinear dynamical model for the electrocardiogram (ECG) is presented for the precise extraction of the characteristic points of these signals with baseline drift. Using the adaptive bionic wavelet transform, the baseline wander is removed efficiently. In fact by the means of the bionic wavelet transform, the resolution in the time-frequency domain can be adaptively adjusted not only by the signal frequency but also by the signal instantaneous amplitude and its first-order differential, which results in a better baseline wander cancellation. At the next step the parameters of the model are chosen to have the least square error with the original ECG. Determining... 

    Physiological and psychological neural system modeling for a key-pressing test

    , Article Proceedings of the IASTED International Conference on Biomedical Engineering, Salzburg, 25 June 2003 through 27 June 2003 ; 2003 , Pages 66-70 ; 0889863539 (ISBN) Mahmudi, H ; Shahdi, S. A ; Vahdat, B. V ; IASTED ; Sharif University of Technology
    2003
    Abstract
    The model introduced in this article for neural system describes both physiological and psychological concepts of neural system and is based on the models of individual elements of the system. This model includes psychological characteristics such as; perception, prediction, learning and response planning, and physiological features such as; sensory analysis, memory and motor execution. The model is designed in such a way that it describes the performance of the neural system for a key-pressing test. The key-pressing experiment consists of a screen with numbers from 1 to 9, which is shown to the operator where one of the numbers is specified by a special color and the operator is to push the... 

    Probe into the molecular mechanism of ibuprofen interaction with warfarin bound to human serum albumin in comparison to ascorbic and salicylic acids: Allosteric inhibition of anticoagulant release

    , Article Journal of Chemical Information and Modeling ; Volume 61, Issue 8 , 2021 , Pages 4045-4057 ; 15499596 (ISSN) Kalhor, H. R ; Taghikhani, E ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    The release of anticoagulant drugs such as warfarin from human serum albumin (HSA) has been important not only mechanistically but also clinically for patients who take multiple drugs simultaneously. In this study, the role of some commonly used drugs, including s-ibuprofen, ascorbic acid, and salicylic acid, was investigated in the release of warfarin bound to HSA in silico. The effects of the aforementioned drugs on the HSA-warfarin complex were investigated with molecular dynamics (MD) simulations using two approaches; in the first perspective, molecular docking was used to model the interaction of each drug with the HSA-warfarin complex, and in the second approach, drugs were positioned... 

    Effect of body weight on spinal loads in various activities: A personalized biomechanical modeling approach

    , Article Journal of Biomechanics ; Volume 48, Issue 2 , 2015 , Pages 276-282 ; 00219290 (ISSN) Hajihosseinali, M ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Epidemiological studies are divided over the causative role of body weight (BW) in low back pain. Biomechanical modeling is a valuable approach to examine the effect of changes in BW on spinal loads and risk of back pain. Changes in BW have not been properly simulated by previous models as associated alterations in model inputs on the musculature and moment arm of gravity loads have been neglected. A detailed, multi-joint, scalable model of the thoracolumbar spine is used to study the effect of BW (varying at five levels, i.e., 51, 68, 85, 102, and 119kg) on the L5-S1 spinal loads during various static symmetric activities while scaling moment arms and physiological cross-sectional areas of... 

    A novel integrated framework to evaluate greenhouse energy demand and crop yield production

    , Article Renewable and Sustainable Energy Reviews ; Volume 96 , 2018 , Pages 487-501 ; 13640321 (ISSN) Golzar, F ; Heeren, N ; Hellweg, S ; Roshandel, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Greenhouses are complex systems that require considerable amounts of energy. In order to optimize their performance, it is necessary to reduce the amount of energy per unit of crop produced. This requires a combined assessment of greenhouse energy balance and crop growth, as well as their interaction. In this work, more than 30 existing greenhouse models are reviewed and different algorithms are combined to propose an integrated energy-yield model. The physical model of greenhouse energy demand is based on the dynamic energy and mass balance while yield production is based on a physiological crop model. The integrated model is validated with observed energy demand and crop yield datasets... 

    Gut-on-a-chip: Current progress and future opportunities

    , Article Biomaterials ; Volume 255 , 2020 Ashammakhi, N ; Nasiri, R ; Barros, N. R. D ; Tebon, P ; Thakor, J ; Goudie, M ; Shamloo, A ; Martin, M. G ; Khademhosseni, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Organ-on-a-chip technology tries to mimic the complexity of native tissues in vitro. Important progress has recently been made in using this technology to study the gut with and without microbiota. These in vitro models can serve as an alternative to animal models for studying physiology, pathology, and pharmacology. While these models have greater physiological relevance than two-dimensional (2D) cell systems in vitro, endocrine and immunological functions in gut-on-a-chip models are still poorly represented. Furthermore, the construction of complex models, in which different cell types and structures interact, remains a challenge. Generally, gut-on-a-chip models have the potential to... 

    Uncontrolled manifold analysis of gait kinematic synergy during normal and narrow path walking in individuals with knee osteoarthritis compared to asymptomatic individuals

    , Article Journal of Biomechanics ; Volume 141 , 2022 ; 00219290 (ISSN) Shafizadegan, Z ; Sarrafzadeh, J ; Farahmand, F ; Salehi, R ; Rasouli, O ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Knee osteoarthritis (KOA) is a common musculoskeletal disorder resulting in altered gait patterns. Uncontrolled manifold (UCM) analysis has been demonstrated as a useful approach for quantitative analysis of motor variability and synergies. The present study aimed to investigate the changes in the kinematic synergy, controlling the center of mass (COM) position while walking on normal and narrow paths in people with KOA compared to asymptomatic participants. In this cross-sectional study, twenty people with mild to moderate KOA and twenty asymptomatic individuals walked at their comfortable preferred speed across normal and narrow paths on a treadmill. The UCM analysis was performed...