Loading...
Search for: plasmons
0.013 seconds
Total 246 records

    Investigation of the Hybrid Structures based on Carbon Materials for Solar Steam Generation

    , Ph.D. Dissertation Sharif University of Technology Simayee, Maedeh (Author) ; Irajizad, Azam (Supervisor) ; Esfandiar, Ali (Supervisor)
    Abstract
    Two-dimensional nanostructures can significantly absorb solar irradiation, due to diverse energy levels, large effective surfaces, layered and porous structures with adjustable physical and chemical properties. Mono and multilayers of graphene, as the first isolated 2D materials with special band-structure of a zero-band gap, along with impressive optical properties, tunable light interaction, and adjustable optical properties by chemical doping or structural defects, have great potential for the next generation of nanophotonic devices. So, graphene is an appropriate candidate for absorption, frequent reflection, and energy conversion of electromagnetic waves at the frequency range of the... 

    Fabrication and Characterization of Transparent and Flexible Conductive Layers Based on Copper Nanofibers

    , Ph.D. Dissertation Sharif University of Technology Nikzad Alhosseini, Mohammad Javad (Author) ; Sadrnezhad, Khatiboleslam (Supervisor) ; Mahdavi, Mohammad (Supervisor)
    Abstract
    The Transparent electrode (transparent conductive layer) is an essential component of electro-optical devices, especially screens, solar cells and touch screens. Today, most semiconductor oxides such as ITO are used for this purpose, which have problems such as inflexibility, high cost, environmental degradation and ion penetration in organic displays. In this research, the design, simulation and fabrication of a transparent electrode with a network of metal nanowires with low resistance between cross fibers and high aspect ratio during the production stages of polymer mold, metal coating and characterization has been done. Using the reducing atmosphere in the sputtering chamber, the... 

    Fabrication of Plasmonic Structures and Investigation of the Effect of Surface Plasmon Resonance on Dye Sensitized Solar Cell

    , Ph.D. Dissertation Sharif University of Technology Sharifi, Nafiseh (Author) ; Irajizad, Azam (Supervisor)
    Abstract
    Dye-sensitized solar cells (DSCs) are third generation of solar cells, which composed of a porous layer of wide band gap semiconductor such as TiO2, covered with a molecular dye that absorbs sunlight, and a counter electrode contacted by a liquid redox electrolyte. Photovoltaic performance is the collective measure of light harvesting, charge separation and charge collection efficiencies. Light harvesting has a significant role in improvement of photovoltaic performance. Molecular engineering of dyes to improve absorption spectrum or to have a broad absorption spectrum,andlight scattering layes are approaches for this porpuse. This research is focused on photon management in DSCs using... 

    Design of Plasmonic Systems for Nanobiophotonic Applications

    , Ph.D. Dissertation Sharif University of Technology Shahmansouri, Afsaneh (Author) ; Rashidian, Bizhan (Supervisor) ; Vosoughi, Manouchehr (Supervisor) ; Shahrokhian, Saeed (Co-Advisor)
    Abstract
    In this thesis periodic plasmonic nanostructures are studied for detection of biological specious. The behavior of metal nanostructure arrays under normal incidence has been widely reported. However, simulation of periodic dispersive structures under oblique incidence requires newer formulations. Formulations, and algorithms based on modified split-field finite-difference time-domain (SF-FDTD) method are introduced, permitting analysis of metallic nanostructures arrays under oblique incidence. These novel algorithms are practically implemented on a parallel processing system based on graphics processing unit (GPU). Test and verification of these formulations are done by analyzing referenced... 

    Design and Implementation of Near Field Excitation System for Spectroscopy of Biological Species

    , Ph.D. Dissertation Sharif University of Technology Sasanpour, Pezhman (Author) ; Rashidian, Bizhan (Supervisor) ; Vossoughi, Manouchehr (Supervisor) ; Shahrokhian, Saeed (Co-Advisor)
    Abstract
    The main goal of this project is analysis, design and implementation of scanning near field optical system for detection of biological species. The activities fall in two main category. Theoretical and experimental. In theoretical part, after studying different models describing near field interaction, we have developed software for computationally analysis of nonlinear interaction of light with nanostructures, considering third order nonlinear susceptibility and dispersion behavior of permittivity for metallic nanostructures. The software implements three dimensional finite difference time domain (FDTD) method for analysis of interaction of electromagnetic wave with matter. In developed... 

    Design, Simulation and Construction of a Rapid Gene Amplification Microfluidic Device Using Polymerase Chain Reaction (PCR) Method

    , M.Sc. Thesis Sharif University of Technology Amadeh, Ali (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    Polymerase chain reaction method is a conventional method for obtaining multiple copies of a specified segment in the DNA molecule and to amplify the DNA molecule itself. Therefore, this method has been of paramount importance in different fields of research and has been applied for different applications. PCR requires thermal cycling, or repeated temperature changes between two or three discrete temperatures to amplify specific nucleic acid target sequences. To achieve such thermal cycling, conventional bench-top thermal cyclers generally use a metal heating block powered by Peltier elements or benefit from forced convection heat transfer. Although efforts have been made in order to reduce... 

    Synthesis & Characterization of Au-HKUST-1 Nanocomposite and Evaluation of Plasmonic Properties of Gold Nanoparticles in this Nanocomposite

    , M.Sc. Thesis Sharif University of Technology Moazzeni, Hamid Reza (Author) ; Madaah Hosseini, Hamid Reza (Supervisor)
    Abstract
    In the past few years, many research works on the controllable integration of metal nanoparticles and metal-organic frameworks were done, since the obtained composite material shows a synergism effect in catalysis and photocatalysis, drug delivery applications, gas, and energy storage, as well as sensing. For the first time, in this study, we employed template-assisted growth to synthesize Au-HKUST-1 Nanocomposite. XRD analysis entirely confirms that employing this strategy in synthesizing Au-HKUST-1 was wholly successful, and the plasmonic properties of this nanostructure were studied via UV-visible spectroscopy. In the course of synthesis, gold nanoparticles with 70nm diameter were... 

    Synthesis and Study of Photocatalytic Activity of Biphasic Titanium Dioxide Loaded with Au@Ag@Au Core Double Shell Bimetallic Nanoparticles

    , Ph.D. Dissertation Sharif University of Technology Daneshvar Asl, Shervin (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    The aim of this project is the synthesis and study of the photocatalytic activity of biphasic titanium dioxide loaded with Au@Ag@Au core double shell bimetallic nanoparticles. The creation of nanostructure, utilization of hierarchical biphasic morphology, loading of light-sensitive particles, and stabilization of photocatalytic particles have enhanced the titanium dioxide photocatalytic activity via approaches of (1) sensitization to visible light, (2) separation of charge carriers produced by light irradiation and minimization of their recombination, and (3) advancing reaction and absorption of reactants by increasing quantity and quality of surface active sites. Hierarchical TiO2... 

    Study, Optimization and Construction of a Microfluidic Gene Amplification Device by Using Thin Film Layer Method

    , M.Sc. Thesis Sharif University of Technology Eslami, Sara Sadat (Author) ; Vosoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Co-Supervisor) ; Shamloo, Amir (Co-Supervisor)
    Abstract
    Polymerase Chain Reaction (PCR) is a process in which a special piece of a gene is amplified millions of times over a short period. This method has been of paramount importance in different fields of research and has been applied for different applications. PCR requires thermal cycling, or repeated temperature changes between two or three discrete temperatures to amplify specific nucleic acid target sequences. To achieve such thermal cycling, conventional bench-top thermal cyclers generally use a metal heating block powered by Peltier elements or benefit from forced convection heat transfer. Due to the fact that these methods are time consuming, it seems that design and fabrication of a fast... 

    Investigation of Constructing a Biosensor for Endotoxin Detection in Biological Products and Comparison of the Results with Conventional Endotoxin Detection Methods

    , M.Sc. Thesis Sharif University of Technology Zandieh, Mohammad (Author) ; Vosoughi, Manouchehr (Supervisor) ; Hosseini, Nezameddin (Supervisor)
    Abstract
    Lipopolysaccharide (LPS), also known as endotoxin, is a highly toxic component exists in the outer membrane of gram negative bacteria. It releases into the environment during every phase of bacterial growth cycle, so it causes contamination of a wide range of biopharmaceutical products. Even small quantities of endotoxin injected to human body can result in fever, septic shock, and death. Therefore, it is highly important to detect and also quantify endotoxin of biopharmaceutical products in quality control laboratories. The most validated method used for endotoxin detection is Limulus Amebocyte Lysate (LAL). Although this method is sensitive, it has some unavoidable drawbacks such as highly... 

    Characterization of Plasma Etching Process Using Plasmonic Structures

    , M.Sc. Thesis Sharif University of Technology Arian, Kiarash (Author) ; Rashidian, Bizhan (Supervisor)
    Abstract
    plasma characterization has become an essential tool for characterization of etching process in fabrication of nano-electronic devices. The existing methods, such as Langmuir probe and interferometry, have shown drawbacks including disturbing the plasma and sensitivity to mechanical and thermal stability of the measuring systems. In recent years, due to the scale down of microelectronic devices and increase of their sensitivity to disturbance in the plasma etching process, a demand for measuring methods offering less disturbance has arisen. Plasmonic structures, owing to their unprecedented field enhancement and confinement, have been extensively studied. Their sub-wavelength dimensions,... 

    Design and Optimization of Infrared Biosensor Using Array of Metallic Resonators

    , M.Sc. Thesis Sharif University of Technology Pasdari Kia, Mohammad (Author) ; Khavasi, Amin (Supervisor) ; Memarian, Mohammad (Supervisor)
    Abstract
    Early detection of diseases has always been critical, especially during the outbreak of infectious and epidemic diseases plays an essential role in controlling the spread of the disease. Finding diagnostic methods with high sensitivity, especially in the early stages of the disease, is an important challenge in the face of new diseases. periodic structures biosensors are accurate sensors and have been very popular in recent years. In this thesis, two types of sensors that are very sensitive are investigated using a circuit model. The first structure is the array of sub-wavelength apertures perforated on a PEC film. In these structures, the extraordinary transmission phenomena are used for... 

    Design of Impedance Surfaces with Metamaterials and Metasurfaces to Implement Line Wave

    , M.Sc. Thesis Sharif University of Technology Hajebrahimi, Marzieh (Author) ; Khavasi, Amin (Supervisor)
    Abstract
    In this thesis we introduce line wave. Which propagates only in one direction and dissipate in other direction. Line wave can propagates at the interface of two complementary impedance surfaces. There are various ways to build a waveguide which can support line waves like complementary structures. In this thesis we try to find a way which will not use complementary structures. Hence we use Spoof Surface Plasmon Polariton concept to mimic complementary structure characteristics. A complementary surface-based waveguide consists of two parts; one part supports TE polarization waves and the other one supports TM polarization waves. When these TE and TM waves face each other in the boundary, line... 

    Design of Optimum Nanoantenna Arrays for Detection Applications

    , Ph.D. Dissertation Sharif University of Technology Armand, Mohammad Javad (Author) ; Rashidian, Bijan (Supervisor) ; Shahmansouri, Afsaneh (Co-Supervisor)
    Abstract
    The main goal of this thesis is introducing a method to design optimum nanoantenna arrays for detection applications. The proposed method is based on the multiple-scattering T-matrix in connection with the Ewald method. The formulation is systematic, quite general, easily traceable, and fast. Its high speed of analysis makes it well suited to design optimizations.In particular, we calculate multiple-scattering terms of the T-matrix formulation with the Ewald method. To the best of our knowledge no report on derivation of the T-matrix of a 3D (or even 2D) periodic array from the T-matrix of the isolated element, based on Ewald method has been reported before.Finally, a software has been... 

    Analysis and Characterization of Near Field Behavior of Plasmonic Nanostructures

    , Ph.D. Dissertation Sharif University of Technology Heydarian, Hesam (Author) ; Rashidian, Bizhan (Supervisor)
    Abstract
    Despite ongoing progress in the field of nanophotonics, characterizing and identifying optical interactions in the deep subwavelength dimensions have remained challenging. The inability of conventional optical microscopy in nanoscale imaging, due to diffraction limit, was the main stimulus for research on new characterizing methods with the capability of non-destructive high-resolution imaging in which the sample preparation is not required. To achieve this goal, scanning probe microscopes are introduced to extract valuable high spatial harmonics from near field measurements on the sample. In this thesis, by focusing on the probe-sample interaction, the near field behavior of the plasmonic... 

    Analysis and Simulation of a Graphene Based Plasmon Laser

    , Ph.D. Dissertation Sharif University of Technology Behjati Ardakani, Sadreddin (Author) ; Faez, Rahim (Supervisor)
    Abstract
    In the present thesis, the SPASER is investigated, from theory to structure design. SPASER is a counterpart of laser in 3D subwavelength dimentions. In other words, SPASER does not suffer from the diffraction limit of photons which is a drawback in laser technology. It potentially can generate intense coherent dark and bright surface plasmon modes. The small size of SPASER gives it the capability of being integrated with electronic chips. So, the electronic technology will become faster if the SPASER is realized. In this thesis, we intend to use the unique plasmonic properties of graphene in our designs. Plasmons on graphene platforms have longer propagation length and larger lifetime in... 

    Using Nonlinear Effects of Light for Optical Signal Processing

    , M.Sc. Thesis Sharif University of Technology Shatery, Farshid (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    Ultrafast signal processing in time-domain with high resolution and reconfigura-bility is a challenging task. This paper, for the first time, introduces a time-varying metasurface consisting of graphene microribbon array for implementing time-lens in the terahertz domain. Given that the surface conductivity of graphene is proportional to the Fermi energy level in the THz regime, it is possible to change the phase property of the incident electromagnetic pulse by changing the Fermi level while the Fermi level itself is a function of voltage. Upon this fact, a quadratic temporal phase modulator, namely time-lens has been realized. This phase modulation is applied to the impinging signal in the... 

    Design of Terahertz Low Loss Waveguides Based on Periodic Dielectric Structures

    , M.Sc. Thesis Sharif University of Technology Tehranian, Ali (Author) ; Ahmadi Boroujeni, Mehdi (Supervisor)
    Abstract
    In this project, we report on two waveguide structures suitable for implementing terahertz compact devices. First structure is composed of a periodic array of metallic blocks attached to a metal plate at the bottom. By integrating the metallic teeth in a silicon ridge and then evacuating the space between metal blocks, we enhanced the field confinement. At last by putting a metal plate over the structure at a proper distance in order to enhance the normal component of the electric field to the upper face of the metal blocks as main component of power transmission, in addition to even more field confinement, we isolated the structure from outside world. We assessed waveguidng properties of... 

    Analysis and Design of a Graphene-based Plasmonic Modulator

    , Ph.D. Dissertation Sharif University of Technology Ghahri, Mohammad Reza (Author) ; Faez, Rahim (Supervisor)
    Abstract
    In this study, we simulated and analyzed a plasmonic waveguide modulator based on single layer graphene. It includes a graphene sheet, which sandwiches between two layers of silicon dioxide. Then, some gates are arranged on either side of the waveguide on a periodic structure. When an electric field is applied perpendicular to the waveguide plate, the Fermi level of graphene under the gates, changes. Detailed analysis is performed by the method of lines based on Maxwell's equations along the propagation direction of the waveguide. Computation of the multi-gate device starts by examining the effect of Fermi level. Transmission coefficient of the magnetic-field norms of the modulator is... 

    Analysis of High-Tc Superconducting Plasmonic Waveguides

    , M.Sc. Thesis Sharif University of Technology Vahedi, Zeinab (Author) ; Rejaei, Behzad (Supervisor) ; Fardmanesh, Mahdi (Supervisor)
    Abstract
    Surface plasmons are the result of a resonant interaction between the waves and the mobile electrons at the interface between negative and positive permittivity materials stimulated by incident light. Due to their specific quantum mechanical nature and zero electrical resistance, superconductors are capable of supporting low-loss plasma waves with extremely large propagation length. In this study, palsmon confinement in some superconducting waveguide structures has been measured by computing the effective index parameter. Superconductors are classified in to high-Tc an low-Tc categories. It is not possible for plasma waves to propagate in low-Tc superconductors, because the plasma energy...