Loading...
Search for: plastic-molds
0.01 seconds

    Study the sintering behavior of nanocrystalline 3Y-TZP/430L stainless-steel composite layers for co-powder injection molding

    , Article Journal of Materials Science ; Volume 44, Issue 5 , 2009 , Pages 1264-1274 ; 00222461 (ISSN) Dourandish, M ; Simchi, A ; Sharif University of Technology
    2009
    Abstract
    Recently, co-powder injection molding process (2C-PIM) has attained considerable interest to fabricate complex-shaped functional materials. The aim of this work is to study the sintering compatibility between nanocrystalline yttria-stabilized zirconia (3Y-TZP) and PIM grade 430L stainless steel (SS) powders, which is the utmost important step in the 2C-PIM process. To evaluate the mismatch strain development during the co-sintering, the isothermal and nonisothermal behaviors of the ceramic and metal powders were studied. Small bilayers of 3Y-TZP/430L were made by a powder metallurgy technique and the feasibility of simultaneous sintering and joining of the composite layer was examined.... 

    Cosintering of powder injection molding parts made from ultrafine WC-Co and 316L stainless steel powders for fabrication of novel composite structures

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 41, Issue 1, January 2010, Pages 233-241 Simchi, A. (Abdolreza) ; Petzoldt, F ; Sharif University of Technology
    Abstract
    Abstract Sintering response and phase formation during sintering of WC-Co/316L stainless steel composites produced by assembling of powder injection molding (PIM) parts were studied. It is shown that during cosintering a significant mismatch strain (> 4 pct) is developed in the temperature range of 1080° C to 1350° C. This mismatch strain induces biaxial stresses at the interface, leading to interface delamination. Experimental results revealed that sintering at a heating rate of 20 K/min could be used to decrease the  

    Cosintering of powder injection molding parts made from ultrafine WC-Co and 316L stainless steel powders for fabrication of novel composite structures

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 41, Issue 1 , 2010 , Pages 233-241 ; 10735623 (ISSN) Simchi, A ; Petzoldt, F ; Sharif University of Technology
    Abstract
    Sintering response and phase formation during sintering of WC-Co/316L stainless steel composites produced by assembling of powder injection molding (PIM) parts were studied. It is shown that during cosintering a significant mismatch strain (>4 pct) is developed in the temperature range of 1080 °C to 1350 °C. This mismatch strain induces biaxial stresses at the interface, leading to interface delamination. Experimental results revealed that sintering at a heating rate of 20 K/min could be used to decrease the mismatch strain to <2 pct. Meanwhile, WC is decomposed at the contact area and the diffusion of C and Co into the iron lattice results in the formation of a liquid and MC and M6C...