Loading...
Search for: polycarbonate
0.012 seconds
Total 35 records

    Synthesis and Optical Properties of Cadmium Selenide Thin Films and Nanowires

    , M.Sc. Thesis Sharif University of Technology Kalhori, Hossein (Author) ; Iraji Zad, Azam (Supervisor) ; Dolati, Abolghasem (Supervisor)
    Abstract
    The interesting properties of metallic and semiconductor nanowires provide many applications in electronic and optoelectronic devices. In this project, we have synthesized Cu and CdSe nanowires using electrodeposition method. To adjust deposition bath conditions and characterize the structure of deposit first we prepared CdSe thin film on ITO substrates. The used solution was contained 0.1 M CdSO4+ 0.1 mM SeO2 in the acidic situation with pH=2.5. The best reduction potential was determined about -0.5 V. The XPS and XRD analyses showed that the ratio of cadmium to selenium in the films was 1:1 and the film’s structure is amorphous. Optical band gap of the cadmium selenide films was obtained... 

    Preparation and Surface Modification of PC Membranes for Gas Separation

    , M.Sc. Thesis Sharif University of Technology Sedghi, Saeed (Author) ; Soltanieh, Mohammad (Supervisor) ; Goodarznia, Iraj (Supervisor)
    Abstract
    The gas separation properties of polycarbonate (PC) membranes were investigated in this study. These membranes were prepared via dry and dry-wet phase inversion technique. Pure O2, N2, and CO2 gases were permeated through prepared membranes. The effects of membrane preparation conditions, including solvent type, non-solvent type, non-solvent/solvent volumetric ratio, polymer weight fraction, and drying temperature on the gas separation properties of dry PC membranes were investigated using Taguchi experimental design. Taguchi analysis show that polymer weight fraction offers the most important effect on the separation characteristics of the dry PC membranes. To get the highest... 

    Synthesis of Palladium Nanowires for Hydrogen Gas Sensor by Field Ionization

    , M.Sc. Thesis Sharif University of Technology dolatkhah, Naeme (Author) ; Irajizad, Azam (Supervisor)
    Abstract
    The interesting properties of metallic nanowires provide many applications in electronic sensors. In this project, we have synthesized Pd nanowires using electrodeposition method. These nanowires are useful for hydrogen sensors by measuring field ionization current in gas. In this project, Pd nanowires were synthesized by electrochemical deposition method in PCT template with 100 nm pore size. The used solution was contained 2mM PdCl2 + 0.1M HCl. The best reduction potential was determined about -0.2V and the best time for synthesizing nanowires was 7 minutes. Chronoampermetric diagrams showed four steps, capacitive current, growth in the holes, reaching to the surface of PCT and the growth... 

    Processing and Characterization of Fracture Behavior of Hybrid Epoxy Nanocomposite Modified with Polycarbonate

    , M.Sc. Thesis Sharif University of Technology Amini NajafAbadi, Leila (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Epoxy resins have good mechanical and thermal properties, high chemical resistance and low shrinkage during cure but in spite of these good properties,they are brittle and this limits the usage of them. Adding a second, soft or rigid, phase has been always an effective strategy to improve the toughness of epoxy. Rigid phase used in resins are divided into organic and inorganic. The aim of this study is to increase epoxy toughness, maintaining mechanical properties and study effect of silica and polycarbonate on fracture toughness simultaneously. Mechanical properties including yield strength and elastic modulus are evaluated by pressure test. Additionally fracture toughness and three... 

    Study on Structure, Mechanical Properties, and Flammability of PC/ABS

    , M.Sc. Thesis Sharif University of Technology Alaei, Yasaman (Author) ; Bagheri, Reza (Supervisor) ; Seyed Reyhani, Morteza (Supervisor)
    Abstract
    Polycarbonate (PC) is known as one of the engineering plastics with remarkable mechanical properties, but the application of this polymer is limited due to its high notch sensitivity. Blending polycarbonate with other polymers such as acrylonitrile butadiene styrene (ABS) is a method to resolve this disadvantage. PC/ABS blends are commonly used in automotive industry, electrical and electronic devices. As PC and ABS are not completely miscible, a variety of compatibilizers are used to achieve a suitable microstructure and high engineering properties. Considering crucial applications of PC/ABS blends, different flame retardants are also used to reduce the flammability. These flame retardants... 

    The Impedimetric Human Papiloma Virous DNA Biosensor Fabrication Based on Gold Nanotubes

    , Ph.D. Dissertation Sharif University of Technology Shariati, Mohsen (Author) ; Ghorbani, Mohammad (Supervisor) ; Sasanpour, Pezhman (Supervisor)
    Abstract
    An impedimetric human papilloma virus (HPV) DNA biosensor based on gold nanotubes (AuNTs) in label free detection was materialized. The AuNTs decorated nanoporous polycarbonate (AuNTs-PC) template as biosensor electrode was fabricated by electrodeposition method. The single strand DNA (ss-DNA) probe was covalently immobilized onto the AuNTs-PC electrode. The hybridization of target sequences with the ss-DNA probe was observed by the electrochemical impedance spectroscopy (EIS). The biosensor showed high selectivity and could differentiate between the complementary, mismatch and non-complementary DNA sequences. The EIS measurements were matched to Randle's equivalent circuit. The... 

    Processing and Characterization of Microstructure and Mechanical Properties of PC/PBT Blend

    , M.Sc. Thesis Sharif University of Technology Shabani, Farzan (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Blend of Polycarbonate/ poly(butylene terephthalate) is among the most famous blends of polycarbonate/polyester with vast engineering applications and unique properties. Miscibility and compatibilization of this blend are important as they directly influence the general properties.Transesterification which occurs in the melt state, is a series of cutting and rejoining of dissimilar polymer chains. The reaction ruins the order of pure chains and forms block copolymers of different natures. Further progress in transesterification lead into a completely random copolymer of initial chains. Time, temperature and addition of catalyst can effectively influence transesterification.In this study,... 

    The Effect of Compatibilizer and Short Glass Fiber on Microstructure and Mechanical Properties of PBT/PC Blend

    , M.Sc. Thesis Sharif University of Technology Shahab, Amir Reza (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    In this research, we studied the effect of compatibilizer and short glass fiber on microstructure and mechanical properties of PBT/PC blends. Fisrt, Antioxidants and sodium pyrophosphate dibasic were used to suppress transesterification in PBT/PC Blend. The results showed that best composition occur when both of them are used. In the next step, we used 3%wt MBS (methyl methacrylate-butadiene-styrene) and saw that this weight percent of this compatibilizer doesn’t useful. Moreover addition of short glass fiber to PBT/PC was examined and the results showed that mechanical properties of composite are extensively increased. Also in this step, we proved this idea that we can replace some of PBT... 

    Fabrication of Porous Electrospun Fibe on Biocompatible Polymers such as Polycaprolactone (Pcl) and Thrs Based eir Application in Sample Preparation

    , M.Sc. Thesis Sharif University of Technology Abdi, Parisa (Author) ; Bagheri, Habib (Supervisor)
    Abstract
    The aim of this study was to develop a method to determine the trace residual amounts of nonsteroidal anti-inflammatory drugs in meat-related samples and to study the effect of different cooking methods and storage conditions of meat before cooking as an effective factor on the fate of these drugs. To proceed this goal, a nanocomposite was prepared from polycaprolactone nanofiber/silica mesopores as green sorbent by electrospinning. The synthesized nanocomposite was implemented for micro-solid phase extraction of the desired drugs in conjunction with high performance liquid chromatography. Polycaprolactone, due to its excellent physical properties, availability, biodegradability,... 

    Mechanical Behavior of Recycled Polyethylene Terephthalate/Polycarbonate/Glass Fiber Composites

    , M.Sc. Thesis Sharif University of Technology Haji Rezaei, Mohammad Javad (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Nowadays, with the increasing number of polyethylene terephthalate wastes, the issue of its recycling has become very important. Among the problems of polyethylene terephthalate recycling are its loss of crystallinity and mechanical properties. Recycled polyethylene terephthalate does not have the properties of new polyethylene terephthalate and using its mixture with other materials is an effective way to remove its waste from nature and return it to the production cycle. The aim of this study is to produce a mixture of recycled polyethylene terephthalate with polycarbonate and glass fibers with mechanical properties such as good impact strength, which ultimately leads to the production of... 

    Preparation of Polycarbonate Membrane for Industrial Wastewater Treatment in Membrane Bioreator

    , M.Sc. Thesis Sharif University of Technology Nazemi Dashtarjandi, Saeed (Author) ; Mousavi, Abbas (Supervisor) ; Bastani, Dariush (Supervisor)
    Abstract
    Today, membrane bioreactors (MBRs) process is one of the most important options in industrial and municipal wastewater treatment. In MBRs, membrane has an essential influence on their performance. In this study, polycarbonate was exploited as membrane to evaluate its performance in MBR since it has excellent mechanical properties. However, polycarbonate is brittle and breaks at low elongation at room temperature. Solution blending was utilized to improve polycarbonate’s properties. Blending membrane was characterized and assessed by scanning electron microscopy (SEM) and tensile strength. Polycarbonate solution blending with polyurehatne which has excellent toughness and flexibility enhance... 

    Efficient batch-mode mixing and flow patterns in a microfluidic centrifugal platform: a numerical and experimental study

    , Article Microsystem Technologies ; 2016 , Pages 1-13 ; 09467076 (ISSN) Mortazavi, S. M. A ; Tirandazi, P ; Normandie, M ; Saidi, M. S ; Sharif University of Technology
    Springer Verlag 
    Abstract
    During recent years centrifugal-based microfluidic devices known as Lab-on-a-CD have attracted a lot of attentions. Applications of these CD-based platforms are ubiquitous in numerous biological analyses and chemical syntheses. Mixing of different species in microscale is one of the essential operations in biochemical applications where this seemingly simple task remains a major obstruction. Application of centrifugal force, however, may significantly improve the flow agitation and mixing, especially when it is combined with the Coriolis force which acts perpendicular to centrifugal force. In this study, mixing process in minichambers located on a rotating platform under a periodic... 

    Synthesis and characterization of electrochemically grown CdSe nanowires with enhanced photoconductivity

    , Article Journal of Materials Science: Materials in Electronics ; Volume 26, Issue 3 , March , 2015 , Pages 1395-1402 ; 09574522 (ISSN) Kalhori, H ; Irajizad, A ; Azarian, A ; Ashiri, R ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    CdSe nanowires were grown in polycarbonate track etched membrane with pore diameter of 80 nm by an electrochemical deposition technique. The mechanism of the growth was studied during the potentiostatic deposition of nanowires. X-ray photoelectron spectroscopy and energy dispersive spectrometry results showed binding of fragments and fraction of atoms for the CdSe nanowires. Microstructure and morphology of synthesized CdSe nanowires were observed by scanning electron microscopy. Optical spectrophotometry technique was used to determine the energy band gap of CdSe nanowires. It was found that the nanowires were resistive in the dark and exhibited a pronounced visible light photoconductivity.... 

    Nanotechnology-assisted microfluidic systems: From bench to bedside

    , Article Nanomedicine ; Volume 16, Issue 3 , 2021 , Pages 237-258 ; 17435889 (ISSN) Rabiee, N ; Ahmadi, S ; Fatahi, Y ; Rabiee, M ; Bagherzadeh, M ; Dinarvand, R ; Bagheri, B ; Zarrintaj, P ; Saeb, M. R ; Webster, T. J ; Sharif University of Technology
    Future Medicine Ltd  2021
    Abstract
    With significant advancements in research technologies, and an increasing global population, microfluidic and nanofluidic systems (such as point-of-care, lab-on-a-chip, organ-on-a-chip, etc) have started to revolutionize medicine. Devices that combine micron and nanotechnologies have increased sensitivity, precision and versatility for numerous medical applications. However, while there has been extensive research on microfluidic and nanofluidic systems, very few have experienced wide-spread commercialization which is puzzling and deserves our collective attention. For the above reasons, in this article, we review research advances that combine micro and nanotechnologies to create the next... 

    Preparation and characterization of polycarbonate/thermoplastic polyurethane blend membranes for wastewater filtration

    , Article Journal of Water Process Engineering ; Volume 16 , 2017 , Pages 170-182 ; 22147144 (ISSN) Nazemidashtarjandi, S ; Mousavi, S. A ; Bastani, D ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The polycarbonate (PC)/thermoplastic polyurethane (TPU) blend membranes were prepared by phase inversion process applied to membrane bioreactor (MBR) to investigate the fouling characteristics. The impact of TPU and poly (vinylpyrrolidone) PVP concentration in polymer dopes on membrane structure, morphology, and performance were studied. The flat sheet fabricated membranes were characterized by scanning electron microscope (SEM), water contact angle (WCA), membrane surface roughness measurements and mechanical strength. The membrane performance was investigated at subcritical operating conditions. Pure water and critical flux through the fabricated membranes were measured for better... 

    Electrodeposition of well-defined gold nanowires with uniform ends for developing 3D nanoelectrode ensembles with enhanced sensitivity

    , Article Materials Chemistry and Physics ; Volume 213 , 2018 , Pages 67-75 ; 02540584 (ISSN) Bahari Mollamahale, Y ; Ghorbani, M ; Dolati, A ; Hosseini, D ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Fabrication of well-defined gold nanowires (GNWs) is of significant importance in many fields such as sensing applications. In this study, the electrodeposition of well-defined GNWs inside polycarbonate (PC) template has been discussed in detail. GNWs were potentiostatically electrodeposited at different filling rates. The growth of GNWs at different stages of pore filling was monitored by electrochemical measurements and field-emission scanning electron microscopy (FE-SEM). It was confirmed that under growth rates between 2.5 and 4 nm/s, GNWs with smooth ends grew uniformly inside the template without any imperfections or corrugations. The length of GNWs was electrochemically controlled to... 

    Friction stir welding of polycarbonate lap joints: Relationship between processing parameters and mechanical properties

    , Article Polymer Testing ; Volume 79 , 2019 ; 01429418 (ISSN) Aghajani Derazkola, H ; Simchi, A ; Lambiase, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The relation between process parameters and properties of polycarbonate (PC) sheet after friction stir welding (FSW) was investigated. Effects of FSW tool rotation speed (ω), travelling speed (V), tilt angle (α) and plunge depth on material flow, joint tensile strength, flexural strength, impact energy and hardness were investigated. It is shown that at low and high levels of heat input sound joints cannot be attained. At low heat inputs, the local temperature is not high enough to decrease the viscosity of the polymer to fill the interface, and thus voids and large planar cracks are formed in the joint root and stir zone. At high heat inputs, expelling of materials due to high peak... 

    Gut-on-a-chip: Current progress and future opportunities

    , Article Biomaterials ; Volume 255 , 2020 Ashammakhi, N ; Nasiri, R ; Barros, N. R. D ; Tebon, P ; Thakor, J ; Goudie, M ; Shamloo, A ; Martin, M. G ; Khademhosseni, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Organ-on-a-chip technology tries to mimic the complexity of native tissues in vitro. Important progress has recently been made in using this technology to study the gut with and without microbiota. These in vitro models can serve as an alternative to animal models for studying physiology, pathology, and pharmacology. While these models have greater physiological relevance than two-dimensional (2D) cell systems in vitro, endocrine and immunological functions in gut-on-a-chip models are still poorly represented. Furthermore, the construction of complex models, in which different cell types and structures interact, remains a challenge. Generally, gut-on-a-chip models have the potential to... 

    Modeling and experimental validation of material flow during FSW of polycarbonate

    , Article Materials Today Communications ; Volume 22 , 2020 Derazkola, H. A ; Eyvazian, A ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Friction stir welding (FSW) of thermoplastic materials is an attractive but a challenging process due to inherent chemical and mechanical characteristics of polymeric materials. In the present work, thermo-mechanical models were employed to investigate the effect of processing parameters on of FSW of polycarbonate (PC). The heat flux during the joining process was localized around the PC join line and led to the formation of circular rings on the upper surface. According to the simulation results, increasing the tool rotational velocity reduced the temperature gradient and decfeased the suseptibelity of crack formation around the joint line. Cracks were formed at low frictional heats and... 

    An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment

    , Article Analytica Chimica Acta ; 2018 ; 00032670 (ISSN) Shariati, M ; Ghorbani, M ; Sasanpour, P ; Karimizefreh, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    An impedimetric human papilloma virus (HPV) DNA biosensor based on gold nanotubes (AuNTs) in label free detection was materialized. The AuNTs decorated nanoporous polycarbonate (AuNTs-PC) template as biosensor electrode was fabricated by electrodeposition method. The single strand DNA (ss-DNA) probe was covalently immobilized onto the AuNTs-PC electrode. The hybridization of target sequences with the ss-DNA probe was observed by the electrochemical impedance spectroscopy (EIS). The biosensor showed high selectivity and could differentiate between the complementary, mismatch and non-complementary DNA sequences. The EIS measurements were matched to Randle's equivalent circuit. The...