Loading...
Search for: polyethylene--pe
0.005 seconds

    Preparation of ultrahigh-molecular-weight polyethylene/carbon nanotube nanocomposites with a Ziegler-Natta catalytic system and investigation of their thermal and mechanical properties

    , Article Journal of Applied Polymer Science ; Volume 125, Issue SUPPL. 1 , 2012 , Pages E453-E461 ; 00218995 (ISSN) Amoli, B. M ; Ramazani, S. A. A ; Izadi, H ; Sharif University of Technology
    Wiley  2012
    Abstract
    In this research, ultrahigh-molecular-weight polyethylene (UHMWPE)/multiwalled carbon nanotube (MWCNT) nanocomposites with different nanotube concentrations (0.5, 1.5, 2.5, and 3.5 wt %) were prepared via in situ polymerization with a novel, bisupported Ziegler-Natta catalytic system. Magnesium ethoxide [Mg(OEt) 2] and surface-functionalized MWCNTs were used as the support of the catalyst. Titanium tetrachloride (TiCl 4) accompanied by triethylaluminum constituted the Ziegler-Natta catalytic system. Preparation of the catalyst and the polymerization were carried out in the slurry phase under an argon atmosphere. Support of the catalyst on the MWCNTs was investigated with Fourier transform... 

    Preparation of UHMWPE/carbon black nanocomposites by in situ Ziegler–Natta catalyst and investigation of product thermo-mechanical properties

    , Article Polymer Bulletin ; Volume 73, Issue 4 , 2016 , Pages 1085-1101 ; 01700839 (ISSN) Sadrani, S. A ; Ramazani, S. A. A ; Khorshidiyeh, S. E ; Jafari Esfad, N ; Sharif University of Technology
    Abstract
    A new bi-supported Ziegler–Natta catalyst was prepared successfully by supporting TiCl4 on the carbon black (CB) and magnesium dichloride. Then, this catalyst was used to prepare ultrahigh molecular weight polyethylene (UHMWPE) nanocomposites via in situ polymerization. The effects of difference molar ratios of triisobutylaluminum as activator to TiCl4, polymerization temperature, pressure of monomer and polymerization time on productivity of the catalyst were studied. The maximum activity was obtained at [Al]/[Ti] = 121:1. Increasing monomer pressure raised catalyst activity. Increasing temperature to 60 °C increased the polymerization yield; however, the higher temperature decreased the...