Loading...
Search for: powders
0.008 seconds
Total 482 records

    Microstructure and compressibility of SiC nanoparticles reinforced Cu nanocomposite powders processed by high energy mechanical milling [electronic resource]

    , Article Ceramics International ; Volume 40, Issue 1, Part A, January 2014, Pages 951–960 Akbarpour, M.R. (Mohammad Reza) ; Salahi, E ; Alikhani Hesari, F ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    Cu/SiC nanocomposite powders with homogeneously distributed nanosize SiC particles were produced by high energy mechanical milling (MM). Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and micro-hardness and density measurements were performed to understand the effects of microstructure and hardness on compaction behavior during MM. The effects of SiC nanoparticle content and mechanical milling time on apparent density (AD) and tap density (TD) of the nanocomposite powders were systematically investigated. The Hausner ratio (HR), defined as TD to AD, were estimated to evaluate friction between the particles. Increasing MM duration and SiC content resulted... 

    Effect of nanoparticle content on the microstructural and mechanical properties of nano-SiC dispersed bulk ultrafine-grained Cu matrix composites [electronic resource]

    , Article Journal of Materials & Design ; December 2013, Volume 52, Pages 881–887 Akbarpour, M. R ; Salahi, E ; Alikhani Hesari, F ; Kim, H. S ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    In this study, the microstructural and mechanical features of monolithic pure Cu and Cu matrix nanocomposites reinforced with three different fractions (2, 4, and 6 vol%) of SiC nanoparticles (n-SiC) fabricated via a combination of high energy mechanical milling and hot pressing techniques were investigated. The fabricated composites exhibited homogeneous distribution of the n-SiC with few porosities. It was found that the grain refinement, the planar features within the grains, and the lattice strains increase with increase in the n-SiC content. The yield and compressive strengths of the nanocomposites were significantly improved with increases in the n-SiC content up to 4 vol%; then they... 

    Friction stir welding of a P/M Al–Al2O3 nanocomposite: Microstructure and mechanical properties

    , Article Materials Science and Engineering: A (Elsevier) ; 2014, 585, 222-232 Khodabakhshi, F ; Sharif University Of Technology
    Abstract
    Solid-state joining of powder-metallurgy processed (P/M) Al–2 vol% Al2O3 (15 nm) nanocomposite by friction stir welding (FSW) was studied. The nanocomposite was prepared via high-energy mechanical milling followed by hot consolidation processes. The microstructure, mechanical properties and fracture behavior of the welds were evaluated and compared with FSWed wrought 1050 aluminum sheets (WAS). We have found that unlike WAS that can processed at various FSW conditions, the working window for the solid-state joining of P/M nanocomposite is narrow and only feasible at relatively high heating inputs. Microstructural studies showed the formation of melted zones with high hardness at the... 

    Sintering viscosity and sintering stress of nanostructured WC–Co parts prepared by powder injection moulding [electronic resource]

    , Article Journal of Powder Metallurgy ; Februrary 2011, Volume 54, Issue 1, P. 84-88 Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    The uniaxial viscosity and sintering stress of WC-10Co-0⊙ 9VC (wt-%) were obtained by a loading dilatometer as functions of fractional density (0⊙ 64< ρ< 0⊙ 93) and temperature (1084< T< 1297° C) according to a Newtonian constitutive law commonly used to simulate sintering. The viscosity is suggested to follow In η= a+ Q/RT+ bρ with the values of a= 52⊙ 3±4⊙ 5 and b= 16⊙ 8±0⊙ 2. Q reflects the temperature dependence of η and estimated to be 502±52 kJ mol-1. The sintering stress exhibited almost a constant value in the range of 0·05–0·4 MPa. It is shown that Rahaman's model best fits the experimental results. This paper describes experiments performed on nanostructured WC–Co feedstock to... 

    Cosintering of powder injection molding parts made from ultrafine WC-Co and 316L stainless steel powders for fabrication of novel composite structures

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 41, Issue 1, January 2010, Pages 233-241 Simchi, A. (Abdolreza) ; Petzoldt, F ; Sharif University of Technology
    Abstract
    Abstract Sintering response and phase formation during sintering of WC-Co/316L stainless steel composites produced by assembling of powder injection molding (PIM) parts were studied. It is shown that during cosintering a significant mismatch strain (> 4 pct) is developed in the temperature range of 1080° C to 1350° C. This mismatch strain induces biaxial stresses at the interface, leading to interface delamination. Experimental results revealed that sintering at a heating rate of 20 K/min could be used to decrease the  

    Modeling of hot isostatic pressing of metal powder with temperature–dependent cap plasticity model

    , Article International Journal of Material Forming ; Volume 6, Issue 3 , September , 2013 , PP. 363-376 Khoei, A. R. (Amir Reza) ; Molaeinia, Z ; Keshavarz, Sh ; Sharif University of Technology
    Abstract
    In this paper, the coupled thermo–mechanical simulation of hot isostatic pressing (HIPing) is presented for metal powders during densification process. The densification of powder is assumed to occur due to plastic hardening of metal particles. The constitutive model developed is used to describe the nonlinear behavior of metal powder. The numerical modeling of hot powder compaction simulation is performed based on the large deformation formulation, powder plasticity behavior, and frictional contact algorithm. A Lagrangian finite element formulation is employed for the large powder deformations. A modified cap plasticity model considering temperature effects is used in numerical simulation... 

    Synthesis, characterization, and cesium sorption performance of potassium nickel hexacyanoferrate-loaded granular activated carbon

    , Article Particulate Science and Technology ; Vol. 32, issue. 4 , 2014 , pp. 348-354 ; ISSN: 02726351 Dashtinejad, M ; Samadfam, M ; Fasihi, J ; Grayeli Fumeshkenar, F ; Sepehrian, H ; Sharif University of Technology
    Abstract
    GAC has been modified by loading of potassium nickel hexacyanoferrate (KNiCF) as a new adsorbent for cesium adsorption. The potassium nickel hexacyanoferrate-loaded granular activated carbon (KNiCF-GAC) was characterized using powder x-ray diffraction (XRD) and nitrogen adsorption-desorption isotherm data, infrared spectroscopy, and its cesium adsorption performance in aqueous solution was investigated. The effect of the various parameters such as initial pH value of the solution, contact time, temperature, and initial concentration of the cesium ion on the adsorption efficiencies of KNiCF-GAC have been studied systematically by batch experiments. The adsorption isotherm of KNiCF-GAC was... 

    Enhancement of efficient Ag-S/TiO2 nanophotocatalyst for photocatalytic degradation under visible light

    , Article Industrial and Engineering Chemistry Research ; Vol. 53, issue. 23 , 2014 , Pages 9578-9586 ; ISSN: 08885885 Feilizadeh, M ; Vossoughi, M ; Zakeri, S. M. E ; Rahimi, M ; Sharif University of Technology
    Abstract
    A new photocatalyst (Ag-S/PEG/TiO2) was synthesized by adding polyethylene glycol (PEG) to an efficient Ag-S/TiO2 photocatalyst, to obtain a photocatalyst that is highly active under visible light. In addition to Ag-S/PEG/TiO2, Ag-S/TiO2 and pure TiO2 were prepared to compare their properties and activities. Specifically, the morphologies and microstructures of the nanophotocatalysts were characterized by means of powder X-ray diffraction (XRD), N2 adsorption-desorption measurements, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) microanalysis, transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy,... 

    A comprehensive investigation into the effect of water to cement ratio and powder content on mechanical properties of self-compacting concrete

    , Article Construction and Building Materials ; Vol. 57 , April , 2014 , pp. 69-80 ; ISSN: 09500618 Nikbin, I. M ; Beygi, M. H. A ; Kazemi, M. T ; Vaseghi Amiri, J ; Rabbanifar, S ; Rahmani, E ; Rahimi, S ; Sharif University of Technology
    Abstract
    Self compacting concrete (SCC), as an innovative construction material in concrete industry, offers a safer and more productive construction process due to favorable rheological performance which is caused by SCC's different mixture composition. This difference may have remarkable influence on the mechanical behavior of SCC as compared to normal vibrated concrete (NVC) in hardened state. Therefore, it is vital to know whether the use of all assumptions and relations that have been formulated for NVC in current design codes are also valid for SCC. Furthermore, this study presents an extensive evaluation and comparison between mechanical properties of SCC using current international codes and... 

    Development of sol-gel-derived multi-wall carbon nanotube/hydroxyapatite nanocomposite powders for bone substitution

    , Article Journal of Composite Materials ; Vol. 48, issue. 4 , February , 2014 , pp. 483-489 ; ISSN: 00219983 Hooshmand, T ; Abrishamchian, A ; Najafi, F ; Mohammadi, M ; Najafi, H ; Tahriri, M ; Sharif University of Technology
    Abstract
    Carbon nanotubes with unique physical and mechanical properties have shown great potential for biological applications, including tissue engineering and mimicking the structure and properties of human bones. In the present work, sol-gel synthesized nanocomposite powder of multi-wall carbon nanotube/hydroxyapatite characterized using field-emission scanning electron microscopy, transmission electron microscope, X-ray diffraction, Fourier transform infra-red spectroscopy and thermal analyses. The results show homogenous dispersion of nanotube in well-crystallized hydroxyapatite ceramic matrix. Scanning electron microscopy and transmission electron microscope observations show the sodium... 

    Synthesis and characterization of pure metallic titanium nanoparticles by an electromagnetic levitation melting gas condensation method

    , Article RSC Advances ; Vol. 4, issue. 14 , 2014 , pp. 7104-7108 ; ISSN: 20462069 Mohammadi, A. V ; Halali, M ; Sharif University of Technology
    Abstract
    Pure titanium nanoparticles were synthesized by utilizing an Electromagnetic Levitation Melting Gas Condensation (ELM-GC) method. Pure bulk titanium samples were melted and evaporated by electromagnetic levitation technique in an inert gas atmosphere in a silica tube. Titanium nanoparticles were formed from ascending vapor by employing high purity argon and helium as carrier gases and cooling agents. Particle size and morphology of the produced nanoparticles were studied by Field-Emission Scanning Electron Microscopy (FE-SEM) and Dynamic Light Scattering (DLS) analysis. Results showed almost spherical nanoparticles with a narrow size distribution under both cooling atmospheres. The purity of... 

    Production of Cu-TiC nanocomposite using mechanical alloying route

    , Article Advanced Materials Research ; Vol. 829, issue , 2014 , pp. 572-576 ; ISSN: 10226680 Bagheri, G. A ; Abachi, P ; Purazrang, K ; Rostami, A ; Sharif University of Technology
    Abstract
    In this study, Cu-TiC nanocomposites were produced by high energy ball milling of elemental powders and in-situ formation of TiC in the copper matrix. Cu-40wt% Ti powder mixture were milled for 60 h, then graphite powder was added, subsequently milling was continued for further 10 h. Based on theoretical calculations, at this composite, the amount of TiC as reinforcement should be 60.25vol% (45.47wt%). The effect of milling time on solution progress of titanium in the copper lattice was studied by X-Ray diffraction analysis (XRD) with CuKα radiation. Considering XRD of Cu-40wt%TiC after 60 h milling data and Williamson-Hall relation, crystallite size and lattice strain of copper were... 

    Production of nanostructured Ni-Ti-Ag alloy by mechanical alloying

    , Article Advanced Materials Research ; Vol. 829 , 2014 , pp. 67-72 ; ISSN: 10226680 Rostami, A ; Sadrnezhaad, S. K ; Bagheri, G. A ; Sharif University of Technology
    Abstract
    Because of corrosion resistance and antibacterial effects, shape memory Ni-Ti-Ag alloy can be considered for different biomedical applications. Mechanical alloying is used to produce nanostructured Ni-Ti-Ag alloy from elemental powders. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) are used to characterize the product. Results show that after 1h milling, homogenous distribution of the elements occurs; while no intermetallic compounds is observed. After 3h milling, titanium dissolves in nickel to form amorphous and nanostructured solid phases. Peaks of B2 phase appear in the XRD pattern after the 3h milling of the powder mixture. Sintering of the 3h-milled... 

    Microstructure and compressibility of SiC nanoparticles reinforced Cu nanocomposite powders processed by high energy mechanical milling

    , Article Ceramics International ; Volume 40, Issue 1 PART A , January , 2014 , Pages 951-960 ; ISSN: 02728842 Akbarpour, M. R ; Salahi, E ; Alikhani Hesari, F ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    Cu/SiC nanocomposite powders with homogeneously distributed nanosize SiC particles were produced by high energy mechanical milling (MM). Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and micro-hardness and density measurements were performed to understand the effects of microstructure and hardness on compaction behavior during MM. The effects of SiC nanoparticle content and mechanical milling time on apparent density (AD) and tap density (TD) of the nanocomposite powders were systematically investigated. The Hausner ratio (HR), defined as TD to AD, were estimated to evaluate friction between the particles. Increasing MM duration and SiC content resulted... 

    Investigation the structural and magnetic properties of FINEMET type alloy produced by mechanical alloying

    , Article Advanced Materials Research ; Vol. 970, issue , 2014 , p. 252-255 Gheiratmand, T ; Siyani, S. M ; Hosseini, H. R. M ; Davami, P ; Sharif University of Technology
    Abstract
    In this research, FINEMET alloy with composition of Fe73.5Si13.5B9Nb3Cu1 was produced by mechanical alloying from elemental powders. The effect of milling time on the magnetic and structural properties of alloy has been investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometery. The results showed that milling for 53 hr leads to the formation of Fe supersaturated solid solution which includes Si, B and Nb atoms with mean crystallite size of ~30 nm. The shift of the main peak of Fe to the higher angles indicated that Si and B atoms dissolve in the Fe solid solution, at primary stage of mechanical alloying, up to the... 

    Effect of Ti-Zn substitution on structural, magnetic and microwave absorption characteristics of strontium hexaferrite

    , Article Journal of Alloys and Compounds ; Vol. 583, issue , 2014 , p. 325-328 Baniasadi, A ; Ghasemi, A ; Nemati, A ; Azami Ghadikolaei, M ; Paimozd, E ; Sharif University of Technology
    Abstract
    SrFe12-xTix/2Zn x/2O19 (x = 0-2.5) powders were synthesized by use of chlorides through co-precipitation method. The obtained powders were then milled by high energy ball mill to crash hard agglomerates and achieve nanoparticles. In order to evaluate microwave absorption versus frequency, composites including ferrite, as a filler, and matrix of polyvinylchloride (PVC) with weight ratio of 70% ferrite were prepared. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM) and vector network analyzer (VNA) were employed to study the structural, magnetic and microwave absorption properties... 

    The effect of Cu powder during Friction stir welding on microstructure and mechanical properties of AA3003-H18

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Vol. 45, issue. 9 , 2014 , p. 3882-3891 Abnar, B ; Kazeminezhad, M ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    Friction stir welding (FSW) was used to join 3003-H18 non-heat-treatable aluminum alloy plates by adding copper powder. The copper powder was first added to the gap (0.1 and 0.2 mm) between two plates and then the FSW was performed. The specimens were joined at various rotational speeds of 800, 1000, and 1200 rpm at traveling speeds of 70 and 100 mm/min. The effects of rotational speed, second pass of FSW, and direction of second pass also were studied on copper particle distribution and formation of Al-Cu intermetallic compounds in the stir zone. The second pass of FSW was carried out in two ways; in line with the first pass direction (2F) and in the reverse direction of the first pass... 

    Magnetic nanoparticles-loaded PLA/PEG microspheres as drug carriers

    , Article Journal of Biomedical Materials Research - Part A ; Vol. 103, issue. 5 , SEP , 2014 , p. 1893-1898 Frounchi, M ; Shamshiri, S ; Sharif University of Technology
    Abstract
    Surface-modified magnetite (Fe3O4) nanoparticles with an average size of 22 nm were prepared. The nanoparticles had a saturation magnetization of 50.7 emu g-1. Then magnetite and drug-loaded microspheres of poly (lactic acid)/poly (ethylene glycol) were prepared at various compositions. The microspheres were spherical in shape and had smooth surface. The diameter size of the microspheres ranged between about 0.2 and 4 μm. Doxorubicin hydrochloride for cancer treatment was the drug that loaded into the microspheres. The prepared microspheres were characterized by FTIR, XRD, VSM, SEM and drug-release measurements. It was found that the drug cumulative release percentage was proportional to... 

    X-ray powder diffraction beamline for iranian light source facility

    , Article IPAC 2013: Proceedings of the 4th International Particle Accelerator Conference, Shanghai ; May , 2013 , Pages 130-132 ; 9783954501229 (ISBN) Khosroabadi, H ; Azhir, A. G ; Amiri, S ; Ghasem, H ; Asian Committee for Future Accelerators (ACFA); American Physical Society Division of Physics of Beams (APS-DPB); Chinese Academy of Sciences (CAS); European Physical Society Accelerator Group (EPS-AG) ; Sharif University of Technology
    2013
    Abstract
    X-ray Powder Diffraction beamline is one of the first priorities of Iranian Light Source Facility day-onebeamlines. This beamline will cover the research requirements of scientific community in the fields of physics, material science, chemistry, etc and also have benefits for industries. This paper shortly reports the ray tracing calculations for the optical design of this beamline. The results show that bending magnet source would satisfy the nowadays users requirements, although insertion device should also be considered for covering the requirements of the future users. In this paper the effects of the optical elements on the users' requirements have been discussed to obtain the... 

    An investigation on mechanical properties of Alumina-Zirconia-Magnesia spinel composite ceramics fabricated by gel-casting using solution combustion synthesized powder

    , Article Materials Science and Engineering A ; Volume 587 , 2013 , Pages 336-343 ; 09215093 (ISSN) Khoshkalam, M ; Faghihi Sani, M. A ; Sharif University of Technology
    2013
    Abstract
    Addition of spinel (MgAl2O4) to Al2O3-ZrO2 composite inhibits alumina grain growth and produces phase boundaries that leads to formation of a ceramic matrix composite with special mechanical properties such as high temperature superplastic deformation. However, the room temperature mechanical properties of Alumina-zirconia-magnesia spinel composite (AZM) such as fracture toughness were rarely investigated by researchers. In this research the AZM nanocomposite powders were synthesized via the solution combustion method. The dense AZM composite samples were fabricated through gelcasting process. Phase analysis studies were performed on both powder and sintered samples and the effects of spinel...