Loading...
Search for: precursor
0.008 seconds
Total 67 records

    Efficient and less-toxic indium-doped mapbi3 perovskite solar cells prepared by metal alloying technique

    , Article Solar RRL ; Volume 6, Issue 9 , 2022 ; 2367198X (ISSN) Tavakoli, M. M ; Fazel, Z ; Tavakoli, R ; Akin, S ; Satapathi, S ; Prochowicz, D ; Yadav, P ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Perovskite materials with ABX3 structure (A: organic, B: metal, and X: halides) have attracted tremendous attention due to their outstanding optoelectronic properties. Herein, a novel approach is developed using chemical vapor deposition (CVD), i.e., metal alloying of halide-perovskite domain via ion-transfer (MAHDI) for the growth of high-quality perovskite films, grown directly from a metal precursor. This technique easily enables us to replace the toxic Pb metal (B site) with other metals using alloying approach. Using the proposed approach, we fabricated stable and efficient Pb–In perovskite solar cells (PSCs) with a maximum power conversion efficiency (PCE) of 21.2%, which is more... 

    Green metal-organic frameworks (MOFs) for biomedical applications

    , Article Microporous and Mesoporous Materials ; Volume 335 , 2022 ; 13871811 (ISSN) Rabiee, N ; Atarod, M ; Tavakolizadeh, M ; Asgari, S ; Rezaei, M ; Akhavan, O ; Pourjavadi, A ; Jouyandeh, M ; Lima, E. C ; Hamed Mashhadzadeh, A ; Ehsani, A ; Ahmadi, S ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Metal-organic frameworks (MOFs), known as highly ordered crystalline hybrid structures, are the products of coordination polymerization of transition metals and organic ligands. MOFs are best known for their extensive specific surface area, hierarchically porous and tailorable 1D, 2D, or 3D micro-and nanostructure, and acceptable biocompatibility. Because of the multiplicity of metallic and organic units used in MOFs synthesis, tailor-made MOFs can be synthesized to be served as building blocks of advanced biological materials and systems. Recently, synthesis of green MOFs has received much more attention for nanobiomedicine usage. We review herein synthesis and biomedical application of... 

    Investigating the effects of precursor concentration and gelling parameters on droplet-based generation of Ca-Alginate microgels: identifying new stable modes of droplet formation

    , Article Materials Today Chemistry ; Volume 24 , 2022 ; 24685194 (ISSN) Besanjideh, M ; Rezaeian, M ; Mahmoudi, Z ; Shamloo, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Droplet-based microfluidics is an attractive approach for producing microgels due to its high potential to control the size and shape of the particles and precisely entrap the substances within the hydrogel matrix. However, the microfluidic generation of monodisperse microgels with desired structures is still challenging. Indeed, the rheological and interfacial properties of the immiscible fluids, as well as the adopted gelling strategy, play important roles in microfluidic methods. Herein, sodium alginate droplets with different concentrations are generated via a microfluidic device with a flow-focusing unit. Besides, a combined in situ and ex situ strategy is optimized to crosslink sodium... 

    Smartphone-based portable device for rapid and sensitive pH detection by fluorescent carbon dots

    , Article Sensors and Actuators A: Physical ; Volume 332 , 2021 ; 09244247 (ISSN) Ehtesabi, H ; Asadollahi, A ; Hallaji, Z ; Goudarzi, M ; Rezaei, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In the past few years, most studies have focused on smart substances that can respond to changes in the environment, as they can be appropriately applied in different fields, including biosensing, biotechnology, and drug delivery. Here, new fluorescent carbon dots (CDs) are synthesized by Terebinth by designing a simple and single-stage hydrothermal path, which facilitates the manufacture of CDs with no need for boring artificial methods, or using poisonous/costly solvents and starting substances. The method is used to concurrently form CDs and passivate their surface, which results in inherently emitted fluorescence. The study of the structure and optical features of the resulting CDs... 

    Expression analysis of BDNF, BACE1 and their antisense transcripts in inflammatory demyelinating polyradiculoneuropathy

    , Article Multiple Sclerosis and Related Disorders ; Volume 47 , 2021 ; 22110348 (ISSN) Ghafour Fard, S ; Mazdeh, M ; Nicknafs, F ; Nazer, N ; Sayad, A ; Taheri, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Acute and chronic inflammatory demyelinating polyradiculoneuropathies (AIDP and CIDP) are two immune-related conditions in the peripheral nervous system. In the current study, we assessed expression levels of Beta-secretase (BACE1), brain-derived neurotrophic factor (BDNF) and their antisense transcripts in the peripheral blood of AIDP and CIDP patients compared with age- and sex-matched controls to assess their potential as biomarkers for these conditions. Expressions of BACE1 and BACE1-AS were down-regulated in CIDP cases compared with controls (Ratios of mean expressions=0.01 and 0.03; P values= 1.07E-08, respectively). On the other hand, expressions of BDNF and BDNF-AS were up-regulated... 

    Seedless growth of two-dimensional disc-shaped WS2 layers by chemical vapor deposition

    , Article Materials Chemistry and Physics ; Volume 257 , 2021 ; 02540584 (ISSN) Rahmani Taji Boyuk, M.R ; Ghanbari, H ; Simchi, A ; Maghsoumi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Chemical processing of two-dimensional (2D) transition metal dichalcogenides has attracted immense attention due to their unique optical, electrical, and catalytic properties. In this paper, we show that under special conditions during seedless chemical vapor deposition (CVD), it is possible to grow large-area 2D WS2 layers with disc-shaped morphology, which has been scarcely reported. Detailed characterizations of the CVD-grown layers by Raman spectroscopy, atomic force microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy have revealed that a gradient in the precursor concentration in the gas phase and strain energy in the deposited hexagonal clusters favor... 

    Investigation of time-frequency analysis and transitional boundary layer over a pitching airfoil

    , Article Scientia Iranica ; Volume 28, Issue 2 B , 2021 , Pages 860-876 ; 10263098 (ISSN) Akhlaghi, H ; Soltani, M. R ; Maghrebi, M. J ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Transitional boundary layer over a pitching airfoil at low Reynolds number (Re = 2:7 × 105) is experimentally investigated using space-frequency and time-frequency analyses of hot- film signals. Boundary layer events are visualized based on the space-frequency and time-frequency plots. The precursor phenomenon for turbulent and fully separated flows is presented based on the time-frequency analysis. A new technique based on time-frequency analysis of hot- film signals is introduced to measure the transition onset and relaminarization locations. This technique functions based on the analysis of high-frequency disturbances of the measured data. Significant attention has been drawn to the... 

    Investigation of time-frequency analysis and transitional boundary layer over a pitching airfoil

    , Article Scientia Iranica ; Volume 28, Issue 2 B , 2021 , Pages 860-876 ; 10263098 (ISSN) Akhlaghi, H ; Soltani, M. R ; Maghrebi, M. J ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Transitional boundary layer over a pitching airfoil at low Reynolds number (Re = 2:7 × 105) is experimentally investigated using space-frequency and time-frequency analyses of hot- film signals. Boundary layer events are visualized based on the space-frequency and time-frequency plots. The precursor phenomenon for turbulent and fully separated flows is presented based on the time-frequency analysis. A new technique based on time-frequency analysis of hot- film signals is introduced to measure the transition onset and relaminarization locations. This technique functions based on the analysis of high-frequency disturbances of the measured data. Significant attention has been drawn to the... 

    Review on alzheimer's disease: inhibition of amyloid beta and tau tangle formation

    , Article International Journal of Biological Macromolecules ; Volume 167 , 2021 , Pages 382-394 ; 01418130 (ISSN) Ashrafian, H ; Hadi Zadeh, E ; Hasan Khan, R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    It is reported that approximately 40 million people are suffering from dementia, globally. Dementia is a group of symptoms that affect neurons and cause some mental disorders, such as losing memory. Alzheimer's disease (AD) which is known as the most common cause of dementia, is one of the top medical care concerns across the world. Although the exact sources of the disease are not understood, is it believed that aggregation of amyloid-beta (Aβ) outside of neuron cells and tau aggregation or neurofibrillary tangles (NFTs) formation inside the cell may play crucial roles. In this paper, we are going to review studies that targeted inhibition of amyloid plaque and tau protein tangle formation,... 

    Investigation of precursors concentration in spray solution on the optoelectronic properties of CuInSe2 thin films deposited by spray pyrolysis method

    , Article Journal of Materials Science: Materials in Electronics ; Volume 32, Issue 21 , 2021 , Pages 25748-25757 ; 09574522 (ISSN) Hashemi, M ; Ghorashi, S. M. B ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Springer  2021
    Abstract
    Copper indium selenide CuInSe2(CISe) thin films were deposited by chemical spray pyrolysis (CSP) method of CuInS2(CIS) and subsequent selenization process. To study the effects of solution concentration, we prepared different precursors solution of CIS including different amount of indium salts from 0.025 to 0.100 M with In/Cu 1.25 and S/In 4. These results propose that solution concentration is critical for inflecting the morphological, optical, electrical, and electrochemical characteristics of solution-processed CISe films and device performance. The studied morphological properties of deposited samples were homogenous, crack-free with large grains in indium salt concentrations more than... 

    Aqueous spray pyrolysis of CuInSe2 thin films: Study of different indium salts in precursor solution on physical and electrical properties of sprayed thin films

    , Article Materials Science in Semiconductor Processing ; Volume 126 , 2021 ; 13698001 (ISSN) Hashemi, M ; Bagher Ghorashi, S. M ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Herein, we deposited CuInSe2(CISe) thin films by using aqueous spray deposition method and post selenization process. The effect of different indium precursor salts including indium chloride, indium nitrate and indium acetate on the structural, morphological, optical and electrical properties of sprayed CISe layers has been studied by using x-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM-EDS), optical transmission (UV–Vis), Mott-Schottky analysis, I–V dark measurements. Although all the deposited thin films show a chalcopyrite tetragonal ordering structure of CISe, the crystallinity, morphology, and electrical characteristics are strongly influenced by the type of... 

    A new Monte Carlo approach for solution of the time dependent neutron transport equation based on nodal discretization to simulate the xenon oscillation with feedback

    , Article Annals of Nuclear Energy ; Volume 141 , 2020 Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper a probabilistic methodology based on core nodalization is proposed to estimate the core power in the presence of xenon oscillation. A time-dependent Monte Carlo neutron transport code named MCSP-NOD is developed for dynamic analysis in arbitrary 3D geometries to simulate xenon oscillations as well as sub-critical condition with feedbacks. The new code is based on the approach adopted in MCNP-NOD which was previously introduced as a tool for core transient analysis using the MCNPX platform. As before, the core is divided into nodes of arbitrary dimensions, and all terms of the transport equation e.g. interaction rates, leakage ratio are estimated using the MC techniques.... 

    Study on spray-pyrolyzed In2S3 thin films, targeted as electron transport layer in solar energy

    , Article Journal of Photonics for Energy ; Volume 10, Issue 2 , 2020 Hashemi, M ; Heidariramsheh, M ; Ghorashi, S. M. B ; Taghavinia, N ; Mahdavi, S. M ; Sharif University of Technology
    SPIE  2020
    Abstract
    Efficient electron transport layers (ETLs) play a pivotal role in the performance of solar cells. In recent years, Indium sulfide (In2S3) has been studied as a promising ETL in CuInGaS(e)2, Cu2ZnSnS(e)4, and perovskite solar cells. Despite several studies on spray-deposited In2S3, there is no complete experimental investigation on In2S3 thin films. The effect of the molar ratio of S/In and the type of indium precursor on the structural, morphological, optical, and electrical properties of sprayed-In2S3 layers has been studied. Films were characterized using x-ray diffraction, scanning electron microscopy (SEM), optical transmission (UV-Vis), Mott-Schottky analysis, four-point probe, and... 

    Investigation of precursors concentration in spray solution on the optoelectronic properties of CuInSe2 thin films deposited by spray pyrolysis method

    , Article Journal of Materials Science: Materials in Electronics ; 2020 Hashemi, M ; Ghorashi, S. M. B ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Springer  2020
    Abstract
    Copper indium selenide CuInSe2(CISe) thin films were deposited by chemical spray pyrolysis (CSP) method of CuInS2(CIS) and subsequent selenization process. To study the effects of solution concentration, we prepared different precursors solution of CIS including different amount of indium salts from 0.025 to 0.100 M with In/Cu 1.25 and S/In 4. These results propose that solution concentration is critical for inflecting the morphological, optical, electrical, and electrochemical characteristics of solution-processed CISe films and device performance. The studied morphological properties of deposited samples were homogenous, crack-free with large grains in indium salt concentrations more than... 

    Thermal conductivity of the cell membrane in the presence of cholesterol and amyloid precursor protein

    , Article Physical Review E ; Volume 102, Issue 4 , 2020 Rafieiolhosseini, N ; Ejtehadi, M. R ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    The cell membrane is responsible for the transportation of heat between inside and outside the cell. Whether the thermal properties of the cell membrane are affected by the cholesterol concentration or the membrane proteins has not been investigated so far. Although the experimental measurement of the membrane thermal conductivity was not available until very recently, computational methods have been widely used for this purpose. In this study, we carry out molecular dynamics simulations to investigate the relation between the concentration of cholesterol and the thermal conductivity of a model membrane. Our results suggest an increase in the membrane thermal conductivity upon increasing the... 

    MicroRNA profiling reveals important functions of miR-125b and let-7a during human retinal pigment epithelial cell differentiation

    , Article Experimental Eye Research ; Volume 190 , 2020 Shahriari, F ; Satarian, L ; Moradi, S ; Sharifi Zarchi, A ; Günther, S ; Kamal, A ; Totonchi, M ; Mowla, S. J ; Braun, T ; Baharvand, H ; Sharif University of Technology
    Academic Press  2020
    Abstract
    Retinal pigment epithelial (RPE) cells are indispensable for eye organogenesis and vision. To realize the therapeutic potential of in vitro-generated RPE cells for cell-replacement therapy of RPE-related retinopathies, molecular mechanisms of RPE specification and maturation need to be investigated. So far, many attempts have been made to decipher the regulatory networks involved in the differentiation of human pluripotent stem cells into RPE cells. Here, we exploited a highly-efficient RPE differentiation protocol to determine global expression patterns of microRNAs (miRNAs) during human embryonic stem cell (hESC) differentiation into RPE using small RNA sequencing. Our results revealed a... 

    Five- and six-coordinated silver(I) complexes formed by a metallomacrocyclic ligand with a “Au2N2” donor group: observation of pendulum and linear motions and dual phosphorescence

    , Article Inorganic Chemistry ; Volume 59, Issue 8 , 31 March , 2020 , Pages 5702-5712 Nayeri, S ; Jamali, S ; Jamjah, A ; Shakirova, J. R ; Tunik, S. P ; Gurzhiy, V ; Samouei, H ; Shahsavari, H. R ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    The six-coordinated silver(I) complex [Au2Ag(μ-(PPh2)2py)2(OTf)2](OTf), 4 (py = pyridine, OTf = CF3SO3), and the five-coordinated silver(I) complex [Au2Ag(acetone)(μ-(PPh2)2py)2](PF6)3, 6, were prepared by the reaction of the precursor complexes 1(OTf)2 and 1(PF6)2, in which 1 = [Au2(μ-(PPh2)2py)2]2+, with 1 equiv of Ag(OTf) in dichloromethane and excess of Ag(PF6) in a mixture of dichloromethane/acetone, respectively. Also, the five-coordinated silver(I) complex [Au2Ag(μ-(PPh2)2py)2(py)(OTf)](OTf)2, 5, was obtained by the reaction of 4 with pyridine. The clusters 4-6 were characterized using multinuclear NMR spectroscopy and elemental microanalysis. The single-crystal X-ray diffraction... 

    Production of high quality ammonium uranyl carbonate from “uranyl nitrate + carbonate” precursor solution

    , Article Progress in Nuclear Energy ; Volume 122 , 2020 Sadeghi, M. H ; Outokesh, M ; Zare, M. H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The purpose of this study is to investigate production of high quality ammonium uranyl carbonate (AUC) from “uranyl nitrate + ammonium bicarbonate”, or “uranyl nitrate + sodium carbonate” precursor solutions, by controlled injection of ammonium carbonate solution which could be applicable in material testing reactor (MTR) fuel production plant for recycling of rejected uranium oxide powder. The experimental observations revealed: at pHs higher than 6, precipitation proceeds with formation of no intermediate, thus ensuing a better morphology and size distribution of the AUC products. The results of scanning electron microscopy, X-ray diffraction, particle size analysis, and uranium content... 

    Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer’s disease therapy

    , Article Biophysical Reviews ; Volume 11, Issue 6 , 2019 , Pages 901-925 ; 18672450 (ISSN) Jokar, S ; Khazaei, S ; Behnammanesh, H ; Shamloo, A ; Erfani, M ; Beiki, D ; Bavi, O ; Sharif University of Technology
    Springer  2019
    Abstract
    Alzheimer’s disease (AD) is an irreversible neurological disorder that progresses gradually and can cause severe cognitive and behavioral impairments. This disease is currently considered a social and economic incurable issue due to its complicated and multifactorial characteristics. Despite decades of extensive research, we still lack definitive AD diagnostic and effective therapeutic tools. Consequently, one of the most challenging subjects in modern medicine is the need for the development of new strategies for the treatment of AD. A large body of evidence indicates that amyloid-β (Aβ) peptide fibrillation plays a key role in the onset and progression of AD. Recent studies have reported... 

    Perovskite/hole transport layer interface improvement by solvent engineering of spiro-ometad precursor solution

    , Article ACS Applied Materials and Interfaces ; Volume 11, Issue 47 , 2019 , Pages 44802-44810 ; 19448244 (ISSN) Taherianfard, H ; Kim, G. W ; Ebadi, F ; Abzieher, T ; Choi, K ; Paetzold, U. W ; Richards, B. S ; Alrhman Eliwi, A ; Tajabadi, F ; Taghavinia, N ; Malekshahi Byranvand, M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Perovskite solar cells (PSCs) are one of the most promising emerging energy-conversion technologies because of their high power conversion efficiencies (PCEs) and potentially low fabrication cost. To improve PCE, it is necessary to develop PSCs with good interfacial engineering to reduce the trap states and carrier transport barriers present at the various interfaces of the PSCs' architecture. This work reports a facile method to improve the interface between the perovskite absorber layer and the hole transport layer (HTL) by adding a small amount of acetonitrile (ACN) in the Spiro-OMeTAD precursor solution. This small amount of ACN dissolves the surface of the perovskite layer, allowing the...