Loading...
Search for: purification
0.014 seconds
Total 146 records

    Quantitative risk assessment for accidental release of ethylene oxide from purification column of an ethylene oxide production unit

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Abdolhamidzadeh, B ; Hashemi, V ; Rashtchian, D ; Sharif University of Technology
    2006
    Abstract
    This paper outlines a quantitative risk assessment for an 110,000 ton/day ethylene oxide production plant in Iran. After a complete and detailed hazard identification study, done by HAZOP method, the purification column was found to be one of the most hazardous sections in this plant. As ethylene oxide with high concentration and inventory is present there. Fault tree analysis (FTA) technique has been used to identify the basic events responsible for top event occurrence and also calculation of top event frequency of occurrence. Human error has been calculated numerically and probability of human error has been estimated. Failure rate data were collected referring to several sources and... 

    Zeolite-based catalytic micromotors for enhanced biological and chemical water remediation

    , Article New Journal of Chemistry ; Volume 44, Issue 44 , 2020 , Pages 19212-19219 Abedini, F ; Madaah Hosseini, H. R ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Zeolite-based micromotors were developed to eliminate the biological and chemical contamination of water in a fast and efficient way. The motors consist of a silver-exchanged zeolite core and a partial catalytic coating. These porous engines showed rapid killing of Pseudomonas aeruginosa bacteria cells in a very short time, less than 7.5 minutes. The heavy metal uptake of the zeolitic motors during the first 20 minutes of contact was considerably higher than that of zeolite particles by 23% for Pb2+, 19% for Co2+, and 16% for Ni2+. Also, the maximum removal efficiency of the motors (at room temperature and for 6 hours) for Pb2+, Co2+, and Ni2+ was 93%, 87%, and 78%, respectively, higher than... 

    Experimental study and thermodynamic modeling for purification of extracted algal lipids using an organic/aqueous two-phase system

    , Article RSC Advances ; Volume 5, Issue 2 , 2015 , Pages 1153-1160 ; 20462069 (ISSN) Abedini Najafabadi, H ; Pazuki, G ; Vossoughi, M ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    The extraction and purification of lipids from the microalgae Chlorella vulgaris have been investigated. First, a mixture of hexane and ethanol was used to extract lipids from the algal biomass. Ultrasonication was employed to disrupt the cell wall and increase the extraction performance. Under these conditions, over 90% of the fatty acids in the biomass were extracted. Second, a biphasic system was formed by adding water and hexane to the extracted crude oil. In this way, fatty acids were mainly distributed in the organic phase (mostly hexane and ethanol) while most of the contaminants remained in the aqueous phase (mostly water and ethanol). Equilibrium distribution data between the phases... 

    Water treatment using stimuli-responsive polymers

    , Article Polymer Chemistry ; Volume 13, Issue 42 , 2022 , Pages 5940-5964 ; 17599954 (ISSN) Abousalman Rezvani, Z ; Roghani Mamaqani, H ; Riazi, H ; Abousalman Rezvani, O ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Water treatment is a process used to eliminate or reduce chemical and biological contaminants that are potentially harmful to the water supply for human use. Stimuli-responsive polymers are a new category of smart materials used in water treatment via a stimuli-induced purification process and subsequent regeneration of the polymers. Stimuli-responsive polymers dynamically change their physico-chemical properties upon environmental changes. They can undergo shrinkage or expansion, alter their optical properties, and change their electrical characteristics depending on the applied stimuli. In this context, various stimuli-responsive polymer systems such as self-assembled nanostructures,... 

    Immobilization of cellulase on non-porous ultrafine silica particles

    , Article Scientia Iranica ; Volume 14, Issue 4 , 2007 , Pages 379-383 ; 10263098 (ISSN) Afsahi, B ; Kazemi, A ; Kheirolomoom, A ; Nejati, S ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    The immobilization of cellulase onto non-porous ultrafine silica particles was studied. Cellulase was extracted from a Trichoderma reesei culture after partial purification with ammonium sulfate (pH = 5.0), which was then immobilized onto non-porous ultrafine silica particles, with or without the use of glutaraldehyde as a crosslinking agent. Cellulase was immobilized by adsorption onto ultrafine silica particles efficiently, as well as by covalent cross-linking with glutaraldehysde. Increasing the concentration of the free form of enzyme increased the amount of immobilized cellulase. The maximum enzyme immobilization happened at the free enzyme concentration of 0.48 mg/ml. In general, the... 

    A conflict resolution method for waste load reallocation in river systems

    , Article International Journal of Environmental Science and Technology ; Volume 16, Issue 1 , 2019 , Pages 79-88 ; 17351472 (ISSN) Aghasian, K ; Moridi, A ; Mirbagheri, A ; Abbaspour, M ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2019
    Abstract
    Various urban, industrial, and agricultural pollutions discharge more than river self-purification potential damages river ecosystem and increases water treatment costs. As different decision-makers and stakeholders are involved in the water quality management in river systems, a new bankruptcy form of the game theory is used to resolve the existing conflict of interests related to waste load allocation in downstream river. The river restoration potential can allocate to the conflicting parties with respect to their claims, by using bankruptcy solution methods. In this research, dischargeable pollution loads to Karun River are determined by pollution sources in various scenarios using... 

    Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite

    , Article Biosensors and Bioelectronics ; Volume 151 , 2020 Ahmadi, N ; Bagherzadeh, M ; Nemati, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, titania-ceria-graphene quantum dot (TC-GQD) nanocomposite was synthesized by hydrothermal method for the first time. The prepared nanomaterials were characterized by XRD, FTIR dynamic light scattering (DLS), FESEM, HRTEM, and EDX spectroscopy along with elemental mapping. The synergistic effect of the nanocomposite components was studied by diffuse reflectance spectroscopy (DRS) and electrical conductivity meter. The results showed that band gap of TC-GQD nanocomposite was shifted to visible lights relative to its components (1.3 eV), and electrical conductivity of the sample was significant increased to 89.5 μS cm−1. After chemical and physical characterization, prepared new... 

    Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water

    , Article Chemosphere ; Volume 264 , 2021 ; 00456535 (ISSN) Ahmadijokani, F ; Tajahmadi, S ; Bahi, A ; Molavi, H ; Rezakazemi, M ; Ko, F ; Aminabhavi, T. M ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Ethylenediamine-functionalized Zr-based metal-organic framework (MOF, UiO-66-EDA) was prepared via Michael addition reaction to investigate its potential for adsorption of heavy metal ions from water. Specifically, the influence of agitation time, solution pH, the dosage of the adsorbent, initial metal ion concentration, temperature, and coexistence of other metal ions was investigated on the removal efficiency of UiO-66-EDA towards Pb(II), Cd(II), and Cu(II) metal ions. The pseudo-second-order kinetic model governed the adsorption of these ions onto the UiO-66-EDA. Langmuir isotherm model matched the experimental isotherm of adsorption with a maximum adsorption capacity of 243.90, 217.39,... 

    Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water

    , Article Chemosphere ; Volume 264 , 2021 ; 00456535 (ISSN) Ahmadijokani, F ; Tajahmadi, S ; Bahi, A ; Molavi, H ; Rezakazemi, M ; Ko, F ; Aminabhavi, T. M ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Ethylenediamine-functionalized Zr-based metal-organic framework (MOF, UiO-66-EDA) was prepared via Michael addition reaction to investigate its potential for adsorption of heavy metal ions from water. Specifically, the influence of agitation time, solution pH, the dosage of the adsorbent, initial metal ion concentration, temperature, and coexistence of other metal ions was investigated on the removal efficiency of UiO-66-EDA towards Pb(II), Cd(II), and Cu(II) metal ions. The pseudo-second-order kinetic model governed the adsorption of these ions onto the UiO-66-EDA. Langmuir isotherm model matched the experimental isotherm of adsorption with a maximum adsorption capacity of 243.90, 217.39,... 

    A theoretical investigation into the effects of functionalized graphene nanosheets on dimethyl sulfoxide separation

    , Article Chemosphere ; Volume 297 , 2022 ; 00456535 (ISSN) Ajalli, N ; Alizadeh, M ; Hasanzadeh, A ; Khataee, A ; Azamat, J ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The potential of carbon-based nanosheet membranes with functionalized pores is great as water treatment membranes. Using the molecular dynamic simulation technique, the dimethyl sulfoxide (DMSO) separation from the water/DMSO binary solution is investigated, and the functionalized graphene nanosheets are used as a membrane. This membrane was functionalized by –F (fluorine) and –H (hydrogen) functional groups. For the separation of DMSO, external hydrostatic pressures up to 100 MPa were applied to the considered systems. The separation mechanism was based on molecular size. Multiple analyses were done to study the capability of considered membranes for the separation of DMSO molecules from... 

    Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes

    , Article Journal of Materials Chemistry ; Volume 21, Issue 2 , Oct , 2011 , Pages 387-393 ; 09599428 (ISSN) Akhavan, O ; Abdolahad, M ; Abdi, Y ; Mohajerzadeh, S ; Sharif University of Technology
    2011
    Abstract
    Vertically aligned multi-wall carbon nanotube (CNT) arrays were fabricated in tip-growth mode on Ni/Si substrates using plasma enhanced chemical vapor deposition. In a purification process including hydrogenation and acid washing of the Ni/CNTs, the oxygen-containing functional groups were substantially reduced and a wide hollow core at the tip of the CNTs was formed by removing the Ni seeds. Sol-gel silver nanoparticles were deposited on the surface of the unpurified Ni/CNTs, while they could also be embedded within the hollow core of the Ni-removed CNTs. The persistency of the silver ions in the Ni-removed Ag-CNTs in comparison to the release of the silver ions from the Ag-Ni/CNTs in a... 

    Design and simulation studies of hybrid power systems based on photovoltaic, wind, electrolyzer, and pem fuel cells

    , Article Energies ; Volume 14, Issue 9 , 2021 ; 19961073 (ISSN) Al-Bonsrulah, H. A. Z ; Alshukri, M. J ; Mikhaeel, L. M ; Al-Sawaf, N. N ; Nesrine, K ; Reddy, M. V ; Zaghib, K ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    In recent years, the need to reduce environmental impacts and increase flexibility in the energy sector has led to increased penetration of renewable energy sources and the shift from concentrated to decentralized generation. A fuel cell is an instrument that produces electricity by chemical reaction. Fuel cells are a promising technology for ultimate energy conversion and energy generation. We see that this system is integrated, where we find that the wind and photovoltaic energy system is complementary between them, because not all days are sunny, windy, or night, so we see that this system has higher reliability to provide continuous generation. At low load hours, PV and electrolysis... 

    Design and simulation studies of hybrid power systems based on photovoltaic, wind, electrolyzer, and pem fuel cells

    , Article Energies ; Volume 14, Issue 9 , 2021 ; 19961073 (ISSN) Al-Bonsrulah, H. A. Z ; Alshukri, M. J ; Mikhaeel, L. M ; Al-Sawaf, N. N ; Nesrine, K ; Reddy, M. V ; Zaghib, K ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    In recent years, the need to reduce environmental impacts and increase flexibility in the energy sector has led to increased penetration of renewable energy sources and the shift from concentrated to decentralized generation. A fuel cell is an instrument that produces electricity by chemical reaction. Fuel cells are a promising technology for ultimate energy conversion and energy generation. We see that this system is integrated, where we find that the wind and photovoltaic energy system is complementary between them, because not all days are sunny, windy, or night, so we see that this system has higher reliability to provide continuous generation. At low load hours, PV and electrolysis... 

    Experimental and theoretical study on BTEX removal from aqueous solution of diethanolamine using activated carbon adsorption

    , Article Journal of Natural Gas Science and Engineering ; Volume 22 , 2015 , Pages 618-624 ; 18755100 (ISSN) Aleghafouri, A ; Hasanzadeh, N ; Mahdyarfar, M ; SeifKordi, A ; Mahdavi, S. M ; Zoghi, A. T ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Activated carbon beds are extensively used in sweetening units of natural gas refineries for the purification of contaminated amine solutions. Correlation of experimental adsorption data using an analytical isotherm equation is need to design an accurate activated carbon bed. In the present study, the adsorption of BTEX from Diethanolamine (DEA) solution by commercial and granular activated carbon (AC) were performed. The Langmuir, Freundlich and Sips isotherm models were used to describe the equilibrium data. The accuracy of the results obtained from the adsorption isotherm models was compared and the values for the regressed parameters were reported. The results show that the Freundlich... 

    Recent advances in aqueous virus removal technologies

    , Article Chemosphere ; Volume 305 , 2022 ; 00456535 (ISSN) Al-Hazmi, H. E ; Shokrani, H ; Shokrani, A ; Jabbour, K ; Abida, O ; Mousavi Khadem, S. S ; Habibzadeh, S ; Sonawane, S. H ; Saeb, M. R ; Bonilla-Petriciolet, A ; Badawi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The COVID-19 outbreak has triggered a massive research, but still urgent detection and treatment of this virus seems a public concern. The spread of viruses in aqueous environments underlined efficient virus treatment processes as a hot challenge. This review critically and comprehensively enables identifying and classifying advanced biochemical, membrane-based and disinfection processes for effective treatment of virus-contaminated water and wastewater. Understanding the functions of individual and combined/multi-stage processes in terms of manufacturing and economical parameters makes this contribution a different story from available review papers. Moreover, this review discusses... 

    Performance of a nickel-alumina catalytic layer for simultaneous production and purification of hydrogen in a tubular membrane reactor

    , Article RSC Advances ; Volume 6, Issue 79 , 2016 , Pages 75686-75692 ; 20462069 (ISSN) Amanipour, M ; Towfighi, J ; Zamaniyan, A ; Ganji Babakhani, E ; Heidari, M ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    A catalytic membrane reactor was synthesized by coating a 4-5 micron thick Ni/γ-Al2O3 layer on top of a hydrogen selective SiO2/Al2O3 composite membrane using a sol-gel method. Mercury intrusion and BET analysis indicated a uniform size distribution with an average pore size of 285 nm and average surface area of 279 m2 g-1. Single-component permeation tests were carried out for H2, CH4 and CO2 in the temperature range of 650-800 °C and the results showed the same permeance and selectivity values for hydrogen as the composite membrane without a catalytic layer. Performance of the catalytic membrane was evaluated by using as a membrane reactor for the methane steam reforming reaction with a... 

    Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: a review

    , Article Desalination ; Volume 420 , 2017 , Pages 330-383 ; 00119164 (ISSN) Asadollahi, M ; Bastani, D ; Musavi, S. A ; Sharif University of Technology
    Abstract
    Reverse osmosis (RO) membrane process has become the most promising technology for desalination to produce purified water. Among numerous polymeric materials used to fabricate RO membranes, aromatic polyamide thin film composite (TFC) membranes are dominant in commercial RO membrane processes because of their high salt rejection and water permeability as well as their excellent chemical, thermal, and mechanical stability. However, the major hindrance to the effective application of polyamide TFC RO membranes is membrane fouling. Furthermore, polyamide TFC RO membranes have limited stability to chlorine, which is commonly used as disinfect to control membrane biofouling. These two factors... 

    An imprinted interpenetrating polymer network for microextraction in packed syringe of carbamazepine

    , Article Journal of Chromatography A ; Volume 1491 , 2017 , Pages 1-8 ; 00219673 (ISSN) Asgari, S ; Bagheri, H ; Es haghi, A ; Amini Tabrizi, R ; Sharif University of Technology
    Abstract
    An imprinted interpenetrating polymer network (IPN) was synthesized and used as a medium for isolation of carbamazepine from urine samples. The polymer network consisted of a homogeneous polystyrene–sol gel hybrid constructed by in–situ radical polymerization method. In this process, within the sol–gel reaction duration, styrene monomer could penetrate into the reaction mixture and after the polymerization initiation, a monolithic IPN structure was prepared. The scanning electron microscopy (SEM) image and energy dispersive spectroscopy (EDX) are indications of the polystyrene dispersion at nano- to micro-meter level in the sol gel matrix. Eventually, the synthesized IPN was used as a... 

    Simulation of water purification using magnetically ultra-responsive micro- and nanoscavengers

    , Article Journal of Water Process Engineering ; Volume 24 , 2018 , Pages 63-73 ; 22147144 (ISSN) Asghari, E ; Moosavi, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Access to clean water is one of the challenges of the 21st century. Thus water purification is inevitable. One method of water treatment is purification by magnetic particles in the presence of magnetic field. The contaminants are attached to the magnetic particles and then by applying a magnetic field, magnetic particles and, thus, the pollutants can be collected. For the optimal design of a water treatment system, the effect of important parameters in the design, such as magnetic fields, particle size, and Reynolds number are determined numerically by modeling and simulating the water treatment process. Two methods are used to create the magnetic field: permanent magnet and coils. It is... 

    Examination of chondroitinase ABC I immobilization onto dextran-coated Fe3O4 nanoparticles and its in-vitro release

    , Article Journal of Biotechnology ; Volume 309 , 2020 , Pages 131-141 Askaripour, H ; Vossoughi, M ; Khajeh, K ; Alemzadeh, I ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Chondroitinase ABC I (cABC I) has received notable attention in treatment of spinal cord injuries and its application as therapeutics has been limited due to low thermal stability at physiological temperature. In this study, cABC I enzyme was immobilized on the dextran-coated Fe3O4 nanoparticles through physical adsorption to improve the thermal stability. The nanoparticles were characterized using XRD, SEM, VSM, and FTIR analyses. Response surface methodology and central composite design were employed to assess factors affecting the activity of immobilized cABC I. Experimental results showed that pH 6.3, temperature 24 °C, enzyme/support mass ratio 1.27, and incubation time 5.7 h were the...