Loading...
Search for: radiation-exposure
0.006 seconds

    Re-evaluation of level 2 PSA results of a VVER-1000 NPP with consideration of innovative severe accident management strategies

    , Article Annals of Nuclear Energy ; Volume 151 , 2021 ; 03064549 (ISSN) Mohsendokht, M ; Jamshidi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The ultimate purpose of the nuclear power plant safety is to protect the public and the environment from unacceptable radiation exposure in all operational states. This paper presents a novel severe accident management framework to cope with the risk of radioactive material release to the environment. The objective is to reduce the contribution of severe accidents to the large and early release frequencies of radioactive materials for a VVER-1000 nuclear reactor. The proposed approach includes the emergency actions of NPP personnel aiming to recover the lost alternating power and restore the core cooling process by all means available at the site. In addition, mobile equipment including a... 

    Subject-specific loads on the lumbar spine in detailed finite element models scaled geometrically and kinematic-driven by radiography images

    , Article International Journal for Numerical Methods in Biomedical Engineering ; Volume 35, Issue 4 , 2019 ; 20407939 (ISSN) Dehghan Hamani, I ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Wiley-Blackwell  2019
    Abstract
    Traditional load-control musculoskeletal and finite element (FE) models of the spine fail to accurately predict in vivo intervertebral joint loads due mainly to the simplifications and assumptions when estimating redundant trunk muscle forces. An alternative powerful protocol that bypasses the calculation of muscle forces is to drive the detailed FE models by image-based in vivo displacements. Development of subject-specific models, however, both involves the risk of extensive radiation exposures while imaging in supine and upright postures and is time consuming in terms of the reconstruction of the vertebrae, discs, ligaments, and facets geometries. This study therefore aimed to introduce a... 

    Public ingestion exposure to 226Ra in Ramsar, Iran

    , Article Journal of Environmental Radioactivity ; Volume 198 , 2019 , Pages 11-17 ; 0265931X (ISSN) Fathabadi, N ; Salehi, A. A ; Naddafi, K ; Kardan, M. R ; Yunesian, M ; Nodehi, R. N ; Deevband, M. R ; Shooshtari, M. G ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Ramsar, in the north of Iran by the Caspian Sea, has been known for the highest natural radiation background on Earth due to the local geology and hydrogeology. The residents and visitors use the hot springs that distribute the natural radionuclides especially 226Ra and its decay products in the areas. Many studies have been undertaken to measure the absorbed dose rate in Ramsar's air, however, no survey has been done to assess public internal exposure from ingestion of natural radionuclides, such as, a broad survey for 226Ra was conducted in foodstuffs and drinking water. This study presents the results of public annual activity intake (Bq) and effective dose (μSv) from ingestion of 226Ra... 

    Doxorubicin/cisplatin-loaded superparamagnetic nanoparticles as a stimuli-responsive Co-delivery system for chemo-photothermal therapy

    , Article International Journal of Nanomedicine ; Volume 14 , 2019 , Pages 8769-8786 ; 11769114 (ISSN) Khafaji, M ; Zamani, M ; Vossoughi, M ; Iraji zad, A ; Sharif University of Technology
    Dove Medical Press Ltd  2019
    Abstract
    Introduction: To date, numerous iron-based nanostructures have been designed for cancer therapy applications. Although some of them were promising for clinical applications, few efforts have been made to maximize the therapeutic index of these carriers. Herein, PEGylated silica-coated iron oxide nanoparticles (PS-IONs) were introduced as multipurpose stimuli-responsive co-delivery nanocarriers for a combination of dual-drug chemotherapy and photothermal therapy. Methods: Superparamagnetic iron oxide nanoparticles were synthesized via the sonochemical method and coated by a thin layer of silica. The nanostructures were then further modified with a layer of di-carboxylate polyethylene glycol... 

    Doxorubicin/cisplatin-loaded superparamagnetic nanoparticles as a stimuli-responsive Co-delivery system for chemo-photothermal therapy

    , Article International Journal of Nanomedicine ; Volume 14 , 2019 , Pages 8769-8786 ; 11769114 (ISSN) Khafaji, M ; Zamani, M ; Vossoughi, M ; Iraji zad, A ; Sharif University of Technology
    Dove Medical Press Ltd  2019
    Abstract
    Introduction: To date, numerous iron-based nanostructures have been designed for cancer therapy applications. Although some of them were promising for clinical applications, few efforts have been made to maximize the therapeutic index of these carriers. Herein, PEGylated silica-coated iron oxide nanoparticles (PS-IONs) were introduced as multipurpose stimuli-responsive co-delivery nanocarriers for a combination of dual-drug chemotherapy and photothermal therapy. Methods: Superparamagnetic iron oxide nanoparticles were synthesized via the sonochemical method and coated by a thin layer of silica. The nanostructures were then further modified with a layer of di-carboxylate polyethylene glycol... 

    SAR thresholds for electromagnetic exposure using functional thermal dose limits

    , Article International Journal of Hyperthermia ; Volume 34, Issue 8 , 2018 , Pages 1248-1254 ; 02656736 (ISSN) Adibzadeh, F ; Paulides, M. M ; Van Rhoon, G. C ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Background and purpose: To protect against any potential adverse effects to human health from localised exposure to radio frequency (100 kHz–3 GHz) electromagnetic fields (RF EMF), international health organisations have defined basic restrictions on specific absorption rate (SAR) in tissues. These exposure restrictions incorporate safety factors which are generally conservative so that exposures that exceed the basic restrictions are not necessarily harmful. The magnitude of safety margin for various exposure scenarios is unknown. This shortcoming becomes more critical for medical applications where the safety guidelines are required to be relaxed. The purpose of this study was to quantify... 

    Radioactivity levels in the mostly local foodstuff consumed by residents of the high level natural radiation areas of Ramsar, Iran

    , Article Journal of Environmental Radioactivity ; Volume 169-170 , 2017 , Pages 209-213 ; 0265931X (ISSN) Fathabadi, N ; Salehi, A. A ; Naddafi, K ; Kardan, M. R ; Yunesian, M ; Nabizadeh Nodehi, R ; Deevband, M. R ; Gooniband Shooshtari, M ; Hosseini, S. S ; Karimi, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Among High Level Natural Radiation Areas (HLNRAs) all over the world, the northern coastal city of Ramsar has been considered enormously important. Many studies have measured environmental radioactivity in Ramsar, however, no survey has been undertaken to measure concentrations in the diets of residents. This study determined the 226Ra activity concentration in the daily diet of people of Ramsar. The samples were chosen from both normal and high level natural radiation areas and based on the daily consumption patterns of residents. About 150 different samples, which all are local and have the highest consumption, were collected during the four seasons. In these samples, after washing and... 

    Flash photo stimulation of human neural stem cells on graphene/TiO 2 heterojunction for differentiation into neurons

    , Article Nanoscale ; Volume 5, Issue 21 , 2013 , Pages 10316-10326 ; 20403364 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2013
    Abstract
    For the application of human neural stem cells (hNSCs) in neural regeneration and brain repair, it is necessary to stimulate hNSC differentiation towards neurons rather than glia. Due to the unique properties of graphene in stem cell differentiation, here we introduce reduced graphene oxide (rGO)/TiO2 heterojunction film as a biocompatible flash photo stimulator for effective differentiation of hNSCs into neurons. Using the stimulation, the number of cell nuclei on rGO/TiO2 increased by a factor of ∼1.5, while on GO/TiO2 and TiO2 it increased only ∼48 and 24%, respectively. Moreover, under optimum conditions of flash photo stimulation (10 mW cm-2 flash intensity and 15.0 mM ascorbic acid in... 

    Highly efficient hydroxyapatite/TiO2 composites covered by silver halides as E. coli disinfectant under visible light and dark media

    , Article Photochemical and Photobiological Sciences ; Volume 12, Issue 10 , 2013 , Pages 1787-1794 ; 1474905X (ISSN) Azimzadehirani, M ; Elahifard, M ; Haghighi, S ; Gholami, M ; Sharif University of Technology
    2013
    Abstract
    TiO2-based photocatalysts are seen as the most common agents for the photodegradation of bacteria. In this study, AgCl/TiO2, hydroxyapatite(Hp)/AgCl/TiO2, AgI/TiO2, and Hp/AgI/TiO2 were prepared by the deposition-precipitation method on P25 TiO2 nanoparticles and were characterized by XRD, SEM, FT-IR, EDX and BET methods. The prepared composites showed high efficiency for the inactivation of Escherichia coli (E. coli) bacteria under visible light and in dark media with different catalyst amounts of 12 and 24 mg, respectively. In less than 30 min, AgI/TiO2, prepared by the combination of cationic surfactant and PVPI2, disinfected 1 × 107 colony-forming units of E. coli completely. However,... 

    Electromechanical resonator based on electrostatically actuated graphene-doped PVP nanofibers

    , Article Nanotechnology ; Volume 24, Issue 13 , 2013 ; 09574484 (ISSN) Fardindoost, S ; Mohammadi, S ; Zad, A. I ; Sarvari, R ; Shariat Panahi, S. P ; Jokar, E ; Sharif University of Technology
    2013
    Abstract
    In this paper we present experimental results describing electrical readout of the mechanical vibratory response of graphene-doped fibers by employing electrical actuation. For a fiber resonator with an approximate radius of 850 nm and length of 100 m, we observed a resonance frequency around 580 kHz with a quality factor (Q) of about 2511 in air at ambient conditions. Through the use of finite element simulations, we show that the reported frequency of resonance is relevant. We also show that the resonance frequency of the fiber resonators decreases as the bias potential is increased due to the electrostatic spring-softening effect  

    Plasma core at the center of a sonoluminescing bubble

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 87, Issue 1 , 2013 ; 15393755 (ISSN) Bemani, F ; Sadighi Bonabi, R ; Sharif University of Technology
    2013
    Abstract
    Considering high temperature and pressure during single bubble sonoluminescence collapse, a hot plasma core is generated at the center of the bubble. In this paper a statistical mechanics approach is used to calculate the core pressure and temperature. A hydrochemical model alongside a plasma core is used to study the bubble dynamics in two host liquids of water and sulfuric acid 85 wt % containing Ar atoms. Calculation shows that the extreme pressure and temperature in the plasma core are mainly due to the interaction of the ionized Ar atoms and electrons, which is one step forward to sonofusion. The thermal bremsstrahlung mechanism of radiation is used to analyze the emitted optical energy... 

    Megavoltage dose enhancement of gold nanoparticles for different geometric set-ups: Measurements and monte carlo simulation

    , Article International Journal of Radiation Research ; Volume 10, Issue 3-4 , 2012 , Pages 183-186 ; 23223243 (ISSN) Mousavie Anijdan, S. H ; Shirazi, A ; Mahdavi, S. R ; Ezzati, A ; Mofid, B ; Khoei, S ; Zarrinfard, M. A ; Sharif University of Technology
    2012
    Abstract
    Background: Gold nanoparticles (GNPs) have been shown as a good radiosensitizer. In combination with radiotherapy, several studies with orthovoltage X-rays have shown considerable dose enhancement effects. This paper reports the dose enhancement factor (DEF) due to GNPs in 18 megavoltage (MV) beams. Materials and Methods: Different geometrical 50-nm GNPs configurations at a concentration of 5 mg/ml were used by both experimental and Monte Carlo (MC) simulation in a deep-seated tumor-like insertion within a phantom. Using MCNP repeated structure capability; a large number of gold nanospheres with a semi-random distribution were applied to simulate this phantom based study. Thermoluminescence... 

    Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers

    , Article Nano Letters ; Volume 10, Issue 5 , April , 2010 , Pages 1632-1638 ; 15306984 (ISSN) Ghadiri, E ; Taghavinia, N ; Zakeeruddin, S. M ; Grätzel, M ; Moser, J. E ; Sharif University of Technology
    2010
    Abstract
    Nanostructured TiO2 hollow fibers have been prepared using natural cellulose fibers as a template. This cheap and easily processed material was used to produce highly porous photoanodes incorporated in dye-sensitized solar cells and exhibited remarkably enhanced electron transport properties compared to mesoscopic films made of spherical nanoparticles. Photoinjected electron lifetime, in particular, was multiplied by 3-4 in the fiber morphology, while the electron transport rate within the fibrous photoanaode was doubled. A nearly quantitative absorbed photon-to-electrical current conversion yield exceeding 95% was achieved upon excitation at 550 nm and a photovoltaic power conversion...