Loading...
Search for: rayleigh-number
0.005 seconds

    A numerical investigation on natural convection heat transfer in annular-finned concentric horizontal annulus using nanofluids: a parametric study

    , Article Heat Transfer Engineering ; Volume 42, Issue 22 , 2021 , Pages 1926-1948 ; 01457632 (ISSN) Ashouri, M ; Zarei, M. M ; Hakkaki Fard, A ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Natural convection heat transfer in a concentric horizontal annulus with annular fins is numerically studied. Due to the low thermal conductivity of water, CuO-water and Al2O3-water nanofluids were used as heat transfer fluids. The effect of three different parameters, including fin spacing, fin eccentricity, and fin thickness at different fin diameters and Rayleigh number range of 104 to 9 (Formula presented.) 105, were studied. The obtained results revealed that Al2O3-water nanofluid has the highest heat transfer rate. The calculated heat transfer rates for Al2O3-water nanofluid for Rayleigh numbers of 9 (Formula presented.) 105, 105, and 104 were respectively up to 12.1%, 26.2%, and 31.6%... 

    A numerical investigation on natural convection heat transfer in annular-finned concentric horizontal annulus using nanofluids: a parametric study

    , Article Heat Transfer Engineering ; 2020 Ashouri, M ; Zarei, M. M ; Hakkaki Fard, A ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Natural convection heat transfer in a concentric horizontal annulus with annular fins is numerically studied. Due to the low thermal conductivity of water, CuO-water and Al2O3-water nanofluids were used as heat transfer fluids. The effect of three different parameters, including fin spacing, fin eccentricity, and fin thickness at different fin diameters and Rayleigh number range of 104 to 9 (Formula presented.) 105, were studied. The obtained results revealed that Al2O3-water nanofluid has the highest heat transfer rate. The calculated heat transfer rates for Al2O3-water nanofluid for Rayleigh numbers of 9 (Formula presented.) 105, 105, and 104 were respectively up to 12.1%, 26.2%, and 31.6%... 

    Effect of several heated interior bodies on turbulent natural convection in enclosures

    , Article Scientia Iranica ; Volume 26, Issue 3B , 2019 , Pages 1335-1349 ; 10263098 (ISSN) Nouri Borujerdi, A ; Sepahi, F ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this study, turbulent natural convection in a square enclosure including one or four hot and cold bodies is numerically investigated in the range of Rayleigh numbers of 1010 < Ra < 1012. The shape of the internal bodies is square or rectangular with the same surface areas and different aspect ratios. In all cases, the horizontal walls of the enclosure are adiabatic, and the vertical ones are isothermal. It is desired to investigate the influence of different shapes and arrangements of internal bodies on the heat transfer rate inside the enclosure with wide-ranging applications such as ventilation of buildings, electronic cooling, and industrial cold box packages. Governing equations,... 

    Effect of several heated interior bodies on turbulent natural convection in enclosures

    , Article Scientia Iranica ; Volume 26, Issue 3B , 2019 , Pages 1335-1349 ; 10263098 (ISSN) Nouri Borujerdi, A ; Sepahi, F ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this study, turbulent natural convection in a square enclosure including one or four hot and cold bodies is numerically investigated in the range of Rayleigh numbers of 1010 < Ra < 1012. The shape of the internal bodies is square or rectangular with the same surface areas and different aspect ratios. In all cases, the horizontal walls of the enclosure are adiabatic, and the vertical ones are isothermal. It is desired to investigate the influence of different shapes and arrangements of internal bodies on the heat transfer rate inside the enclosure with wide-ranging applications such as ventilation of buildings, electronic cooling, and industrial cold box packages. Governing equations,... 

    3D investigation of natural convection of nanofluids in a curved boundary enclosure applying lattice Boltzmann method

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 28, Issue 8 , 2018 , Pages 1827-1844 ; 09615539 (ISSN) Hosseini Abadshapoori, M ; Saidi, M. H ; Sharif University of Technology
    Emerald Group Publishing Ltd  2018
    Abstract
    Purpose: The purpose of this paper is to investigate the natural convection behavior of nanofluids in an enclosure. The enclosure is a 3D capsule with curved boundaries filled with TiO2-water nanofluid. Design/methodology/approach: In this paper, a multiple relaxation times lattice Boltzmann method (MRT-LBM) has been used. Two-component LBM has been conducted to consider the interaction forces between nanoparticles and the base fluid. Findings: Results show that the enhanced Nusselt number (Nu*) increases with the increase in volume fraction of nanoparticles (ϕ) and Ra number and decrease of nanoparticle size (λ). Additionally, the findings indicate that increasing volume fraction beyond a... 

    Lattice Boltzmann simulation of TiO2-water nanofluid in a curved boundary domain at high Rayleigh numbers

    , Article Computers and Fluids ; Volume 168 , 30 May , 2018 , Pages 159-169 ; 00457930 (ISSN) Hosseini Abadshapoori, M ; Saidi, M. H
    Elsevier Ltd  2018
    Abstract
    In this paper, a two-component Lattice Boltzmann Method (LBM) has been utilized to simulate the natural convection of TiO2-water nanofluid in a curved geometry. The main purpose of this research is to study the effect of nanoparticle size and also boundary conditions on the thermal characteristics of the nanofluid. Furthermore, the effect of Rayleigh number (Ra) and volume fraction of nanoparticles (ϕ) on the average Nusselt number (Nuave) have been investigated. Two different thermal boundary conditions, namely adiabatic and constant temperature, have been considered in the current work for the curved boundaries. The Rayleigh number varies from 103 to 109. Four different sizes, namely 10,... 

    CFD modeling of natural convection in right-angled triangular enclosures

    , Article International Journal of Heat and Technology ; Volume 34, Issue 3 , 2016 , Pages 503-506 ; 03928764 (ISSN) Mirabedin, S. M ; Sharif University of Technology
    Edizioni ETS  2016
    Abstract
    Two-dimensional numerical simulations have been performed to study natural convection in right-angled triangular enclosures filled with water considering different aspect ratios. Continuity, momentum and energy equations are solved assuming Boussinesq approximation utilizing COMSOL. Effect of Rayleigh number, Ra, on heat transfer rate is investigated by showing Nusselt number, Nu, for a range from 1 × 104 to 1 × 107 . It is shown that increasing aspect ratio of the cavity increases averaged Nusselt number in a cavity heated from below. Finally, a correlation for heat transfer rate is developed considering the effect of aspect ratio using simulation results  

    Space-time-frequency coding over quasi-static frequency-selective channels with linear complexity for the ML receiver

    , Article Scientia Iranica ; Volume 20, Issue 3 , 2013 , Pages 738-745 ; 10263098 (ISSN) Shahabinejad, M ; Talebi, S ; Shahabinejad, M ; Sharif University of Technology
    2013
    Abstract
    The achievement of our previously proposed space-time coding algorithm entitled full-rate linear-receiver space-time block code (FRLR STBC) has motivated us to propose, in this paper, a new class of high-rate space-time-frequency block codes (STFBCs) over frequency-selective Rayleigh fading channels. We have called these codes FRLR STFBCs with interleaving (FRLR STFBCs-I). FRLR STFBCs-I could achieve a full-diversity property over quasi-static channels. Simulation results also verify that the proposed schemes exhibit proper performances in comparison with the recently proposed STFBCs. The most outstanding characteristic of the newly introduced high-rate codes is the linear complexity of the... 

    Numerical study of enhanced heat transfer by coupling natural and electro-convections in a horizontal enclosure

    , Article Journal of Enhanced Heat Transfer ; Volume 18, Issue 6 , 2011 , Pages 503-511 ; 10655131 (ISSN) Ghazi, R ; Saidi, M. S ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    The heat transfer enhancement of natural convection using an electrohydrodynamic technique inside a horizontal enclosure heated from below is studied numerically. The interactions between the electric field, flow field, and temperature field are investigated by computational fluid dynamics methods. The flow and temperature fields are affected by voltage applied to the wire electrodes. For different voltages and numbers of electrodes, it is noticed that the Nusselt number increases in all cases and the best enhancement is obtained at lower Rayleigh numbers. It is also shown that increasing the number of electrodes does not always cause an increase in the heat transfer enhancement. Actually,... 

    Effects of insulated and isothermal baffles on pseudosteady-state natural convection inside spherical containers

    , Article Journal of Heat Transfer ; Volume 132, Issue 6 , April , 2010 , Pages 1-10 ; 00221481 (ISSN) Duan, Y ; Hosseinizadeh, S. F ; Khodadadi, J. M ; Sharif University of Technology
    2010
    Abstract
    The effects of insulated and isothermal thin baffles on pseudosteady-state natural convection within spherical containers were studied computationally. The computations are based on an iterative, finite-volume numerical procedure using primitive dependent variables. Natural convection effect is modeled via the Boussinesq approximation. Parametric studies were performed for a Prandtl number of 0.7. For Rayleigh numbers of 104, 105, 106, and 107, baffles with three lengths positioned at five different locations were investigated (120 cases). The fluid that is heated adjacent to the sphere rises replacing the colder fluid, which sinks downward through the stratified stable thermal layer. For... 

    Numerical study of high gradient thermobuoyant flow in a tilted cavity using a novel non-boussinesq algorithm

    , Article Numerical Heat Transfer; Part A: Applications ; Volume 58, Issue 12 , 2010 , Pages 984-1003 ; 10407782 (ISSN) Hosseinizadeh, S. F ; Darbandi, M ; Heidarnataj, M ; Sharif University of Technology
    2010
    Abstract
    We study the natural convection heat transfer in a tilted square cavity with different tilt angles. The cavity is subject to a high gradient temperature resulting in high Rayleigh number flows. The fluid is air and is treated as an ideal gas. The flow is laminar. The fluid properties change with temperature variation using Sutherland's law. Because of imposing large temperature gradients to the two cavity opposite walls, there is substantial density variation in the domain. We use a novel non-Boussinesq algorithm to model the density variation fully. Therefore, the current results are considerably different from those obtained using the classical Boussinesq-based methods, which replace the... 

    A note on benchmarking of numerical models for density dependent flow in porous media

    , Article Advances in Water Resources ; Volume 29, Issue 12 , 2006 , Pages 1918-1923 ; 03091708 (ISSN) Ataie Ashtiani, B ; Aghayi, M. M ; Sharif University of Technology
    2006
    Abstract
    Verification of numerical models for density dependent flow in porous media (DDFPM) by the means of appropriate benchmark problems is a very important step in developing and using these models. Recently, Infinite Horizontal Box (IHB) problem was suggested as a possible benchmark problem for verification of DDFPM codes. IHB is based on Horton-Rogers-Lapwood (HRL) problem. Suitability of this problem for the benchmarking purpose has been investigated in this paper. It is shown that the wavelength of instabilities fails to be a proper criterion to be considered for this problem. However, the threshold of instability formation has been found to be appropriate for benchmarking purpose. © 2006... 

    Control of thermo magnetic heat transfer in porous cavity with Baffle(s)

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 9, Issue PART A , 2010 , Pages 627-631 ; 9780791843826 (ISBN) Heidary, H ; Davoudi, M ; Pirmohammadi, M ; Sharif University of Technology
    Abstract
    Steady, laminar, natural-convection flow in the presence of a magnetic field in a porous cavity heated from left wall sinusoidally and cooled from right wall is considered. It is well known that unavoidable hydrodynamic movements can be damped with the help of a magnetic field. The Finite Volume method and SIMPLE algorithm for discretizing is used to solve the non-dimensional governing equations. The Convection and Diffusion term of the equations are discretized by Central Difference Scheme (CDS).The numerical procedure has been done over a range of Rayleigh number, Ra, and value of Hartmann number (Ha), 0 ≤ Ha ≤ 150 and effect of them is investigated on average and local Nusselt number.... 

    CFD modeling of natural convection heat transfer of TIO2-water nanofluid in a cylindrical container

    , Article Frontiers in Heat and Mass Transfer ; Volume 7, Issue 1 , 2016 ; 21518629 (ISSN) Mirabedin, S. M ; Sharif University of Technology
    Global Digital Central 
    Abstract
    This work focuses on numerical validation of natural convection heat transfer of TiO2-water nanofluids in a cylindrical container using COMSOL. The main aim of this study is to examine different available approaches to calculate effective thermal conductivity and compare them with experimental data available in the literature. Simulation results show that for considered mixture, average Nusselt number decreases by increasing Rayleigh number and particle volume fraction. It has been found that only one model was able to represent similar trends for given particle volume fractions, compared to experimental results  

    Natural convection in circular enclosures heated from below for various central angles

    , Article Case Studies in Thermal Engineering ; Volume 8 , 2016 , Pages 322-329 ; 2214157X (ISSN) Mirabedin, S. M ; Farhadi, F ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Two-dimensional numerical simulations have been performed to study natural convection in circular enclosures filled with water considering different central angles. Continuity, momentum and energy equations are solved assuming Boussinesq approximation utilizing COMSOL. Effect of Rayleigh number, Ra, on heat transfer rate is investigated by showing Nusselt number, Nu, for a range from 1×103 to 1×107. It is shown that decreasing central angle of the cavity increases averaged Nusselt number in a cavity heated from below. Finally, a correlation for heat transfer rate is developed considering the effect of the angle between two sides of the cavity and Ra number using simulation results  

    Electrode arrangement effect on natural convection in a horizontal enclosure

    , Article ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels ; Issue PART A , 2009 , Pages 187-196 ; 9780791843499 (ISBN) Ghazi, R ; Saidi, M. S ; Saidi, M. H ; ASME ; Sharif University of Technology
    Abstract
    The heat transfer enhancement of natural convection, using electrohydrodynamic technique inside a horizontal enclosure heated from below, is studied numerically. The interactions between electric field, flow field, and temperature field are investigated by CFD methods. The flow and temperature fields are affected by voltage applied at the wire electrodes. For different voltages and number of electrodes, it is noticed that the Nusselt number increased in all cases and the best enhancement is obtained at lower Rayleigh numbers. It is also shown that increasing the number of electrodes doesn't always cause an increase in the heat transfer enhancement. Actually, when the number of electrodes is... 

    Numerical simulation of magnetic convection ferrofluid flow in a permanent magnet–inserted cavity

    , Article Journal of Magnetism and Magnetic Materials ; Volume 442 , 2017 , Pages 270-278 ; 03048853 (ISSN) Ashouri, M ; Behshad Shafii, M ; Sharif University of Technology
    Abstract
    The magnetic convection heat transfer in an obstructed two-dimensional square cavity is investigated numerically. The walls of the cavity are heated with different constant temperatures at two sides, and isolated at two other sides. The cavity is filled with a high Prandtl number ferrofluid. The convective force is induced by a magnetic field gradient of a thermally insulated square permanent magnet located at the center of the cavity. The results are presented in the forms of streamlines, isotherms, and Nusselt number for various values of magnetic Rayleigh numbers and permanent magnet size. Two major circulations are generated in the cavity, clockwise flow in the upper half and...