Loading...
Search for: recirculations
0.003 seconds
Total 30 records

    Investigation of EDC Turbulent Combustion Model for Flameless Combustion Regime in a Certain Combustion Chamber

    , M.Sc. Thesis Sharif University of Technology Hadian, Amir Hossein (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    Reducing carbon emissions emanated from combustion of fossil fuels is a challenging problem and consumes huge amount of money that is put into research every year. Nitrogen oxides are among the most important pollutants which have been at the center of attention of industries and international environment protection organizations, especially due to their increased production by commercial aircrafts at higher altitudes of the atmosphere. Flameless is a combustion regime that has been independently discovered by different research teams while working on reducing nitrogen oxides from burning fossil fuels in the early 1990s, and afterwards has been studied for its exclusive characteristics in... 

    Experimental Investigation of Cold-flow Characteristics in Near-Wake of V-gutter Flameholders

    , M.Sc. Thesis Sharif University of Technology Ataei Dadavi, Iman (Author) ; Mazaheri, Karim (Supervisor) ; Morad, Mohammad Reza (Supervisor)
    Abstract
    Bluff bodies are commonly used to stabilize flames in many high-speed flow applications. V-gutters are one of the most common bluff bodies that are mainly used in ramjet combustors and turbojet or turbofan afterburners for flameholding. Aerodynamic characteristics of flow behind V-gutter has crucial effect on mechanism of flame stabilization, therefore more experimental investigations still seem to be necessary in this area. Particle Image Velocimetry technique which has high temporal and spatial resolution has been used in this research in order to better investigate the structure and dynamics of this unsteady and complex flow filed. Experiments were done on a reference V-gutter in... 

    Numerical Analyses of Gas Recirculation Effects in Flameless Combustion

    , M.Sc. Thesis Sharif University of Technology Dehghannezhad Ghahfarokhi, Saeed (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    Flameless combustion in combustion technology is an innovative method with low nox production that few years provided it passes. In this paper the effects of various parameters on flameless combustion chamber with separate fuel and air jets, has been modeled numerically with the help of Fluent 6.3 software. Differences between traditional combustion and flameless combustion were determined and the flame structure has been studied in different scenarios. In numerical modeling, approach were used to modeling turbulence and eddy dissipation concept (EDC) approach use to modeling combustion and turbulence interaction effects. A global Two-step reaction mechanism for propane and a global... 

    Energy and Exergy Analysis of a Turbocharged Three-Cylinder Spark Ignition Engine and the Use of a Vortex Tube to Recover the Exhaust

    , M.Sc. Thesis Sharif University of Technology Entezari, Sina (Author) ; Kazemzadeh Hanani, Siamak (Supervisor) ; Chitsaz, Eiman (Supervisor)
    Abstract
    In this research energy and exergy Balance has been studied for a turbocharged three-cylinder engine. Energy balance is a method based on the first law of thermodynamics and based on this method the control volume is selected on the engine and the input and output energies of the control volume are calculated. Exergy balance is also a method based on the second law of thermodynamics which achieves the amount of irreversibility and ability to convert useful work for different energies in the control volume. In the tests performed, the net output power, output exhaust energy, energy transferred to the cooling fluid and other energies, including convection and radiation heat transfer from the... 

    Experimental investigation of the effect of inlet concentration on the behavior of turbidity currents in the presence of two consecutive obstacles

    , Article Journal of Waterway, Port, Coastal and Ocean Engineering ; Volume 143, Issue 2 , 2017 ; 0733950X (ISSN) Yaghoubi, S ; Afshin, H ; Firoozabadi, B ; Farizan, A ; Sharif University of Technology
    American Society of Civil Engineers (ASCE)  2017
    Abstract
    Turbidity currents are often the main processes of sediment transport in deep waters and reservoirs. To prevent sedimentation in critical locations, various methods, such as placing solid obstacles in the path of these flows, have been proposed. In the present study, the effect of inlet concentration on the behavior of turbidity currents in the presence of two consecutive triangular obstacles was investigated experimentally. For this purpose, a series of laboratory experiments were conducted with various inlet concentrations. In each experiment, velocity and concentration profiles were measured using an acoustic Doppler velocimeter. The velocity of the current head and local Froude number... 

    Estimating Volatile Organic Compound emissions from wastewater circulating aeration tanks

    , Article Scientia Iranica ; Volume 12, Issue 3 , 2005 , Pages 300-305 ; 10263098 (ISSN) Yaghmaei, S ; Rashidkhani, A ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    The need for the control of Volatile Organic Compounds (VOCs) has led engineers to modify wastewater aeration tank systems. In this research, air recirculation has been investigated as a possible VOC control strategy for these systems. A steady-state mathematical model of VOC emission rates has been developed from the fundamentals of VOC convection, volatilization and biodegradation. This model has been used to study the effect of aeration recirculation in enhancing the biodegradation of VOCs in the system, using dichloromethane as a typical VOC. A feasibility study considering plants of various sizes is needed to compare the costs and benefits of air recirculation to other VOC control... 

    Large eddy simulation of low swirl flames under external flow excitations

    , Article Flow, Turbulence and Combustion ; Volume 100, Issue 1 , 2018 , Pages 249-269 ; 13866184 (ISSN) Shahsavari, M ; Farshchi, M ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    Low swirl flame characteristics under external flow excitations are numerically investigated using large eddy simulations with a dynamically thickened flame combustion model. A finite volume scheme on a Cartesian grid with a dynamic one equation eddy viscosity subgrid scale model is used for large eddy simulations. The excitations are imposed on inlet velocity profiles by a sinusoidal forcing function over a wide range of amplitudes and frequencies. Present investigation shows that although, the swirling motion of the low swirl flame is not intense enough to induce a recirculation zone in ensemble averaged results, external flow excitations increase the local swirl number upstream of the... 

    Low swirl premixed methane-air flame dynamics under acoustic excitations

    , Article Physics of Fluids ; Volume 31, Issue 9 , 2019 ; 10706631 (ISSN) Shahsavari, M ; Farshchi, M ; Chakravarthy, S. R ; Chakraborty, A ; Aravind, I. B ; Wang, B ; Sharif University of Technology
    American Institute of Physics Inc  2019
    Abstract
    In this study, simultaneous particle image velocimetry and planar laser induced fluorescence of hydroxyl radical, chemiluminescence imaging, and hot-wire measurements are utilized to study reacting low swirl flow dynamics under low to high amplitude acoustic excitations. Results show that a temporal weak recirculation zone exists downstream of the flame, which is enlarged in size under acoustic excitations. Investigations show that temporal behaviors of this recirculation zone play a significant role in flame movements and instabilities. As the acoustic wave amplitude increases, the flame lift-off distance changes drastically, resulting in flame instabilities (flashback and blowout) during... 

    Retrofitting a steam power cycle by using water from the interstage feed water pump as reheat spray

    , Article ASME Power Conference 2008, Lake Buena Vista, FL, 22 July 2008 through 24 July 2008 ; July , 2008 , Pages 23-30 ; 9780791848326 (ISBN) Saeedi, M. H ; Irani Rahaghi, A ; Mousavi, M. S ; Power Division, ASME ; Sharif University of Technology
    2008
    Abstract
    Various methods are used in thermal power plants to adjust the superheated or reheated steam temperature to a pre-determined set point, including flue gas recirculation, using tilting burners and spray of water from discharge of feed water pump, etc. In this paper, an innovative method is presented to control the reheater temperature by tapping water from an interstage of the feed water pump to control reheater temperature at the Bisotoun Power Plant (a steam cycle based power plant in the western Iran). The spray water for the superheaters is secured from the discharge of feed water pump, but interstage water, instead of gas recirculation or using tilting burner, is used to control the... 

    Introducing an adaptive robust controller for artificial heart

    , Article Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 24 June 2012 through 27 June 2012 ; June , 2012 , Pages 413-418 ; 21551774 (ISSN) ; 9781457711992 (ISBN) Ravanshadi, S ; Jahed, M ; Sharif University of Technology
    2012
    Abstract
    Prolonged and uncontrolled high shear stresses and turbulence can cause hemolysis, while alternating and low-level stresses may contribute to platelet activation and thrombus formation. Such deficiencies are reported for Total Artificial Heart (TAH) systems which are generally not fully capable of dynamic adaptation to sudden pressure and volume changes. This study introduces an adaptive robust controller for a linear motor based TAH (LMTAH) which overcomes such shortcomings. Proposed controller performance is compared with simulated natural heart in normal and stressed physiological conditions. Application of adaptive robust control results in flows with less stress variation and... 

    Drag reduction ability of slippery liquid-infused surfaces: A review

    , Article Progress in Organic Coatings ; Volume 170 , 2022 ; 03009440 (ISSN) Pakzad, H ; Nouri Borujerdi, A ; Moosavi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Devising effective methods to reduce drag forces is of great interest as these methods could prevent the wastage of fuel and decrease carbon emission and the global warming rate. Since the invention of Liquid-Infused Surfaces (LISs) in 2011, numerous investigations have been conducted to study their capability in various applications. Due to recirculation or drawing of the penetrated liquid within the surface structure, these surfaces acquire a slippiness property. The conducted investigations showed that these slippery surfaces have great potential for reducing drag forces, whether in a laminar or turbulent flow. In the present work, we first briefly elucidate common drag reduction methods,... 

    Data center power reduction by heuristic variation-aware server placement and chassis consolidation

    , Article CADS 2012 - 16th CSI International Symposium on Computer Architecture and Digital Systems ; 2012 , Pages 150-155 ; 9781467314824 (ISBN) Pahlavan, A ; Momtazpour, M ; Goudarzi, M ; Sharif University of Technology
    2012
    Abstract
    The growth in number of data centers and its power consumption costs in recent years, along with ever increasing process variation in nanometer technologies emphasizes the need to incorporate variation-aware power reduction strategies in early design stages. Moreover, since the power characteristics of identically manufactured servers vary in the presence of process variation, their position in the data center should be optimally determined. In this paper, we introduce two heuristic variation-aware server placement algorithm based on power characteristic of servers and heat recirculation model of data center. In the next step, we utilize an Integer Linear Programming (ILP) based... 

    Numerical simulation of laminar and turbulent two-phase flow in pressure-swirl atomizers

    , Article AIAA Journal ; Volume 50, Issue 10 , 2012 , Pages 2091-2101 ; 00011452 (ISSN) Nouri Borujerdi, A ; Kebriaee, A ; Sharif University of Technology
    AIAA  2012
    Abstract
    This paper has developed an axisymmetric laminar and turbulent two-phase flow solver to simulate pressure-swirl atomizers. Equations include the explicit algebraic Reynolds stress model, the Reynolds-averaged Navier-Stokes, and the level set equation. Applying a high-order compact upwind finite difference scheme with the level set equation being culminated to capture the interface between air-liquid two-phase flow and decreasing the mass conservation error in the level set equation. The results show that some recirculation zones are observed close to the wall in the swirl chamber and to the axis. This model can predict converting the Rankin vortex in the swirl chamber to the forced vortex in... 

    Heat transfer enhancement of ferrofluid flow within a wavy channel by applying a non-uniform magnetic field

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 139, Issue 5 , 2020 , Pages 3331-3343 Mousavi, S. M ; Biglarian, M ; Rabienataj Darzi, A. A ; Farhadi, M ; Hassanzadeh Afrouzi, H ; Toghraie, D ; Sharif University of Technology
    Springer Netherlands  2020
    Abstract
    This paper presents the effects of a non-uniform magnetic field on the hydrodynamic and thermal behavior of ferrofluid flow in a wavy channel by 3D numerical simulation. The wavy surfaces at the top and bottom of the channel are heated by constant heat fluxes. Moreover, the sidewalls are adiabatic. In the wavy section, in the perpendicular direction of the main flow, the magnetic field that linearly varies along the direction of the main flow is applied. The mathematical model that is consistent with the principles of ferrohydrodynamics and magnetohydrodynamics is used for the problem formulation. The results indicate that the wavy wall enhances the heat transfer rate on the bottom of the... 

    Evaluation of the main operating parameters of a homogeneous charge compression ignition engine for performance optimization

    , Article Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ; Volume 231, Issue 8 , 2017 , Pages 1001-1021 ; 09544070 (ISSN) Mohebbi, M ; Abdul Aziz, A ; Hosseini, V ; Ramzannezhad, M ; Shafaghat, R ; Sharif University of Technology
    Abstract
    Homogeneous charge compression ignition engines require a smart control system to regulate the input quantities of the engine in various operational conditions. Achieving an optimum combustion needs an appropriate system response for different engine loads and speeds according to the power acquired from the engine, as well as the amounts of emissions present in the exhaust. Therefore, performing a set of experimental tests together with numerical simulations in a wide range of conditions facilitates calibration of the input parameters of the engine. In this study, the effects of the thermodynamic parameters and the thermokinetic parameters on the engine output in the preliminary design stage... 

    Availability analysis on combustion of n-heptane and isooctane blends in a reactivity controlled compression ignition engine

    , Article Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ; Volume 232, Issue 11 , 2018 , Pages 1501-1515 ; 09544070 (ISSN) Mohebbi, M ; Reyhanian, M ; Ghofrani, I ; Aziz, A. A ; Hosseini, V ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Unfortunately, energy demands and destruction of the environment from uncontrolled manipulation of fossil fuels have increased. Climate change concerns have resulted in the rapid use of new, alternative combustion technologies. In this study, reactivity controlled compression ignition (RCCI) combustion, which can simply be exploited in internal combustion (IC) engines, is investigated. To introduce and identify extra insightful information, an exergy-based study was conducted to classify various irreversibility and loss sources. Multidimensional models were combined with the primary kinetics mechanism to investigate RCCI combustion, incorporating the second law of thermodynamics. The... 

    Effect of empty bed residence time on biotrickling filter performance: Case study-triethylamine

    , Article International Journal of Environmental Science and Technology ; Vol. 11, issue. 1 , 2014 , pp. 183-190 ; ISSN: 17351472 Mirmohammadi, M ; Bayat, R ; Keshavarzi Shirazi, H ; Sotoudeheian, S ; Sharif University of Technology
    Abstract
    In this study, a laboratory-scale biotrickling filter (BTF) is used to remove Triethylamine (TEA) from gaseous wastes. The BTF is made of stainless steel with a height of 210 cm and an internal diameter of 21 cm packed with lava rocks. TEA elimination pattern was evaluated by changing empty bed residence times (EBRTs). The maximum elimination capacity (EC) has been determined to be 87 g/m3/h. At all EBRTs 52, 31, 20, and 10 s, contaminant transferring from gas phase to liquid was more than the EC. Also, the removal efficiency was 100 % for a mass loading of 100 g/m3/h. While the liquid recirculation velocity of 3.466 m3/m2/h was maintained, the flow rate was adjusted to 60, 100, 156, and 312... 

    Triethylamine removal using biotrickling filter (BTF): effect of height and recirculation liquid rate on BTFs performance

    , Article International Journal of Environmental Science and Technology ; Volume 14, Issue 8 , 2017 , Pages 1615-1624 ; 17351472 (ISSN) Mirmohammadi, M ; Sotoudeheian, S ; Bayat, R ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2017
    Abstract
    This study investigated the removal of triethylamine using a biotrickling filter. The influence of affecting parameters, such as height and recirculation liquid rate (VL) on contaminant removal efficiency, was examined in detail. The results demonstrated that in the constant empty bed residence time (EBRT), when VL was increased, the removal efficiency (RE) increased. Also, for a specific VL, increasing EBRT could also increase RE values. However, it seems that an increasing VL is a more cost-effective way to enhance RE as compared to an increasing EBRT. The obtained outcomes represented that for a constant EBRT, an increase in inlet loading (IL) could decrease RE. For lower ILs, the removal... 

    Investigation of flame structure and precessing vortex core instability of a gas turbine model combustor with different swirler configurations

    , Article Physics of Fluids ; Volume 34, Issue 8 , 2022 ; 10706631 (ISSN) Mardani, A ; Asadi, B ; Beige, A. A ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    Numerical simulation of a dual-swirl gas turbine model combustor is performed under cold and reacting flow conditions using a three-dimensional unsteady Reynolds-averaged Navier-Stokes approach. A multi-species chemical mechanism is used in this study for the analysis of the numerous radicals participating in the ignition process and the flame structure. The other objective of this study is to investigate the flow field under different injector configurations, including both co-rotating and counter-rotating swirler arrangements, different swirl intensities, and vane areas. A comparison of the results with experimental data shows that the predicted velocity and temperature profiles follow the... 

    Experimental investigation of baffle effect on the flow in a rectangular primary sedimentation tank

    , Article Scientia Iranica ; Volume 17, Issue 4 B , 2010 , Pages 241-252 ; 10263098 (ISSN) Jamshidnia, H ; Firoozabadi, B ; Sharif University of Technology
    2010
    Abstract
    In primary sedimentation tanks, short-circuiting enlargement of dead zones and high flow mixing problems are caused by circulation regions (dead zones), which can reduce the optimal sedimentation of particles. For proper design of such tanks, the formation of recirculation zones should be avoided. The provision of a baffle as a geometrical modification of a tank may influence the flow field for better sedimentation. Thus, in this study, velocity measurements were performed by a three-dimensional Acoustic Doppler Velocimeter (ADV) to investigate baffle effects on the velocity distribution in a primary rectangular sedimentation tank, quantitatively. Effects of baffle positioning were also...