Loading...
Search for: reinforced-concrete
0.013 seconds
Total 180 records

    Application of Composite FRP Decks in Building Structures

    , M.Sc. Thesis Sharif University of Technology Sadr Ara, Ali (Author) ; Mofid, Masood (Supervisor)
    Abstract
    This study is devoted to the analysis and design of a recently proposed steel-FRP deck system. A methodology is being proposed to analysis the elastic behavior of the proposed deck. In this method the deck is modeled as an equivalent orthotropic plate which is constrained by rotational springs along its edges. An analytical model of the proposed deck is derived by using Rayleigh-Ritz method where the primary Rayleigh-Ritz shape functions are generated from orthonormal polynomials by using Gram-Schmidt procedure. The results of the proposed methodology show good agreement with finite element analysis results. In order to test the applicability of the proposed deck as buildings flooring... 

    Seismic Behavior Comparison of RC Shear Walls Strengthened Using FRP Composites, Steel Elements, and Concrete Jacket

    , M.Sc. Thesis Sharif University of Technology Habibi, Omid (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    This paper aims at investigating the seismic behavior of strengthened reinforced concrete (RC) shear walls using a 3D finite element analysis. A series of four different configurations of carbon fiber reinforced polymer (CFRP) composites, four different schemes of steel elements and two different schemes of concrete jacket are utilized to compare the two methods of retrofitting RC shear walls with similar dimensions and reinforcement ratios. Nonlinear simulations of the RC shear walls are conducted under the action of lateral cyclic loading in ABAQUS Explicit software. In addition, the numerical modeling for RC walls strengthened by CFRP composites as well as steel elements are validated... 

    Strengthening RC Arch Structures Using FRP Laminate

    , M.Sc. Thesis Sharif University of Technology Dehshahri, Fataneh (Author) ; Khaloo, Alireza (Supervisor) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Although considerable researches have been conducted on strengthening RC structures using FRP method during past years, a few researches have been reported on RC arch or curved structures strengthened by FRP. In this study, behavior of RC arches strengthened by FRP strips is investigated. The behavior of strengthened RC arches under gravitational load is analyzed using finite elements method. The arches are modeled by appropriate software in order to evaluate the behavior. The structural behavior of arches is more complicated. So, the estimation of the effect of strengthening using FRP technique on such structures is hard in comparison with traditional RC beams. In this study, the effect of... 

    Seismic Rehabilitation of Reinforced Concrete Structures Using Eccentric Steel Bracing

    , M.Sc. Thesis Sharif University of Technology Rajaee Mohammadiye, Kourosh (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    The seismic performance of a low-rise nonductile reinforced concrete (RC) building rehabilitated using eccentric steel bracing is investigated. At first three-story building was Modeled using sap 2000 computer program then analyzed and getting the results. The effectiveness of the eccentric steel bracing in rehabilitating the building was examined. The effect of distributing the steel bracing over the height of the RC frame on the seismic performance of the rehabilitated building was studied. The behavior of the nonductile RC frame members is represented by a beam–column element capable of modeling the strength deterioration and the effect of the axial force on the yield moment and the... 

    Strengthening Reinforced Concrete Deep Beams Using FRP Systems

    , M.Sc. Thesis Sharif University of Technology Mesgarian, Iman (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    In recent years, the development of the plate bonding repair technique has been shown to be applicable to many existing strengthening problems in the building industry. This technique may be defined as one in which composite sheets or plates of relatively small thickness are bonded with an epoxy adhesive to, in most cases, a concrete structure to improve its structural behaviour and strength. The sheets or plates do not require much space and give a composite action between the adherents. The old structure and the new bonded-on material create a new structural element that has a higher strength and stiffness than original one. According to the available methods of analysis and design for... 

    Study of Shear Lag Effect on Non-rectangular RC Shear Walls

    , M.Sc. Thesis Sharif University of Technology Tabiee, Mohammad (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    The present study aims to evaluate the effect of the shear-lag on non-rectangular RC shear walls and develop equations to determine the axial stress and strain distributions and calculate the effective flange width. Research has shown that a non-rectangular shear wall under a lateral load experiences the largest axial stress and strain in the flange-web cojunction. This phenomenon is referred to as the shear-lag effect and reduces the bending capacity of the shear wall. As a result, the effective flange width is typically defined to consider the shear lag effect. The present work first reviewed the literature on the effects of shear lag on non-rectangular RC shear walls. Then, flanged shear... 

    Parametric Study on Seismic Performance of Spherical RC Domes

    , M.Sc. Thesis Sharif University of Technology Gholamrezaie, Amir (Author) ; Vafaei, Abolhassan (Supervisor) ; Mofid, Massoud (Co-Advisor)
    Abstract
    The present parametric study discusses the effective factors on seismic performance of spherical RC domes. For this perpose, a series of domes with different spans, a variety of contact angles (the angle between the bottom of the sphere and the center of the sphere), openings with different areas and various support condition are studied. Then the value of response modification factor and it's components is determined to take into account the effect of each component. The results obtained indicated that the response modification factor increases as the contact angle enhances. However, the span of domes insignificantly affects the value of response modification factor.also analysis on domes... 

    Experimental Study on Flexural Strength of Notched Fiber Reinforced Concrete Beam

    , M.Sc. Thesis Sharif University of Technology Fartash, Ali (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    The benefits of fiber reinforced concrete (FRC) have been thoroughly investigated. Much of this work has focused on polypropylene FRC notched beams. Data on the bending behavior of beams with side notch is scarce. A pilot investigation on the compressive behavior of macro-synthetic FRC and on the splitting tensile strength of FRC was carried out. Twenty beam specimens with two different strength of 35 and 60 MPa was tested. The beams dimensions were 15*15*55 centimeter and they were notched at the bottom at mid and side span. Two different notch depth of 5 and 7.5 centimeter was implemented. At the end it was found out addition of fiber decreases compressive strength of 35 Mega Pascal... 

    Laboratory Study of Fracture Parameters of Ultra-High Performance Fiber Reinforced Concrete

    , M.Sc. Thesis Sharif University of Technology Ebrahimzadeh, Mohsen (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    High performance concrete has a compressive strength of more than one hundred and twenty MPa. The effect of steel fibers on the flexural fracture of this type of concrete has been studied, but the mechanical behavior of fracture of this material has not been fully studied yet. In this research, the effect of different percentages of propylene fibers on the mechanical properties of reinforced concrete will be investigated experimentaly. For this purpose, beam samples with dimensions of 40*10*10 cm, which had an initial notch with a depth of 3 cm in the lower middle of it, have been tested to investigate the effect of fiber percentage on how the crack propegate and the sample breaks. It is... 

    Numerical Modeling of Shear Strengthening of Reinforced Concrete Deep Beams by Using FRP

    , M.Sc. Thesis Sharif University of Technology Shayanmehr, Siavash (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    The structural behavior of deep beams is different with usual beams as a result of the low span-to-height ratio. Shear failure load is less for deep beams. Implementation of externally bonded reinforcement such as fiber reinforced polymers (FRP) is a unique method for shear strengthening of deep beams. In this study, the effects of FRP layers on the web of the reinforced concrete deep beam have been investigated by a nonlinear finite element program. Five beams four of which were strengthened with FRP laminates were numerically modeled and the results were compared with experimental results. The effect of some governing parameters such as compressive strength of concrete, orientation of... 

    Failure Modeling of Reinforced Concrete Structures Using Plastic–Damage Models

    , M.Sc. Thesis Sharif University of Technology Hajibabaee, Meghdad (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    The modeling of mechanical behavior of Reinforced concrete Structures has been an important issue in civil engineering. In this thesis, an approach to the numerical modeling of different parts of these structures such as concrete and steel bars was presented. The model is based on damage and plasticity in porous materials. The behavior of steel materials was modeled through Von-Misses plasticity model while the coupling of the Gurson plasticity and a rate dependent damage model based on elastic strains were used for modeling the behavior of concrete materials. The effect of interaction between concrete and steel bar in RC members was considered through an experimental relation in which the... 

    Crack Propagation Modeling in Arched Concrete Structures Reinforced by FRP Using XFEM and Damage Model

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Amir Hossein (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    In practice, structures made of concrete are full of cracks. The strength of concrete is mainly determined by the tensile strength, which is about 10% of the compressive strength. As long as cracking in concrete is unavoidable, we have to try to minimize their detrimental effects. This objective can be achieved by resisting (or limiting) propagation of existing cracks. Because of this, reinforcement (mostly steel) is used to increase the carrying capacity of the material and to control the development of cracks. Concrete structures that fail, already shows a large number of large and small cracks before their maximum carrying capacity is reached. The failure of concrete can be characterized... 

    Finite Element Modeling of Flexural Behavior of RC Beams Using FRP

    , M.Sc. Thesis Sharif University of Technology Jafarzadeh Eslami, Mehran (Author) ; Rahimzadeh Rofooei, Fayyaz (Supervisor)
    Abstract
    The flexural behavior of reinforced concrete beams through application of FRP is studied, considering FRP-concrete bonding. Moreover, the nonlinear behavior of concrete (generation of crack and crush) is taken into consideration. Different parameters such as the number of layers of CFRP sheets, the effect of tensile reinforcing bars, the effect of using glass fibers, and modeling resin layer between the concrete and FRP are investigated. The results are compared with the existing experimental tests and those obtained from analytical method, ACI 440.2R-08 and ISIS Canada. The results show that by adding CFRP sheet to the control beam, the stiffness and flexural strength of the beam improves... 

    Protection of Steel Rebar in Concrete with Zinc Based Coatings in Persian Gulf

    , M.Sc. Thesis Sharif University of Technology Attar, Morteza (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Reinforced concrete is one of the most important structural materials used in the construction industry worldwide. Nevertheless, certain physical and chemical factors in the service environment can contribute to its deterioration and failure. One of the most significant factors is the reinforcing steel bar (rebar) corrosion. In order to minimize the rebars corrosion, different kinds of coatings were investigated and evaluated by scientists. In this investigation comparative studies were performed on two different kinds of coated rebars (zinc-rich epoxy and polyamide epoxy coated rebars) and uncoated rebar. In order to evaluate these reinforced concretes, the adhesion, durability, thickness... 

    Determination of Response Modification Factor for Steel Frames with Saddle (Khorjini) Connections and RC Shear Walls on the Basis of FEMA P695 Rationale

    , M.Sc. Thesis Sharif University of Technology Mive, Reza (Author) ; Alijani Moghaddam, Hassan (Supervisor)
    Abstract
    Steel structure with saddle connections constitutes a portion of the old steel structures in Iran. During past strong ground motions such as Manjil and Bam earthquakes, these structures were vulnerable and experienced significant damages. These structures were widely used due to their easy installation. However, according to their unpromising behavior, they need an appropriate lateral force-resisting system. A concrete shear wall is one of the suitable lateral force resisting systems that can improve the behavior of steel frames with saddle connections. To find the coefficients of seismic performance factors including response modification factor, overstrength factor, and deflection... 

    Seismic Performance of Partitions in RC Buildings

    , Ph.D. Dissertation Sharif University of Technology Kazerounian, Alireza (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Many reinforced concrete frame buildings with masonry partitions have been built all around the world. Observations from past earthquakes show that the partitions can endanger the life of buildings occupants and lead to significant damage and loss. Failure of the partitions can be caused by dynamic vibrations and in-plane and out-of-plane loads/displacements. The interaction between in-plane and out-of-plan behaviors and location of partitions, nonlinearity and higher modes of the structures could affect the out-of- plane seismic demands on partitions. Therefore, there is a need for a comprehensive assessment in order to limit the loss in buildings with masonry partitions. This research... 

    Seismic Performance of Composite Frames Consisting of Reinforced Concrete Columns and Steel Beams

    , M.Sc. Thesis Sharif University of Technology Mosleh Khorrami, Kamran (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Composite systems consisting of concrete columns and steel beams are introduces as structural systems in recent years. These structural systems enjoy merits of both steel and concrete frames by efficiently combining the advantages of them. This study is allocated to lateral force resistance system using armed concrete and structural steel. Advantages of composite structures rather to those of two other conventional ones are among performance characteristics under ultimate loads, economical conservation, and higher speed of construction.In this research the aim is to study these frame under earthquake induced loads. The seismic performances of these composite frames with through column beams,... 

    Seismic Performance of Reinforced Concrete Structures with Corrugated Steel Plate Shear Walls and Evaluation of Seismic Performance Factors

    , M.Sc. Thesis Sharif University of Technology Sang Sefidi, Reza (Author) ; Mofid, Masoud (Supervisor)
    Abstract
    There are two aspects to this research. In the first section, a numerical method is used to analyze the seismic performance of reinforced concrete frames with corrugated and flat steel shear walls as a lateral bearing system. In the second section, the seismic performance factors for reinforced concrete frames with corrugated steel shear walls (response modification factor (R), overstrength factor (Ω_0), and deflection amplification factor (C_d)) for reinforced concrete frame with corrugated steel shear walls have been determined.In the first section of this study, a three-story reinforced concrete frame with a flat steel shear wall with a scale of one to three is validated in finite element... 

    Plastic Hinge Length and Drift Capacity of FRP Reinforced Concrete Columns under Seismic Loads

    , M.Sc. Thesis Sharif University of Technology Mirhabibi, Maziar (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    A brief overview of the proposed research, its aims, engineering relevance and applications; as well as expected achievements compared to the present state of the art:The plastic hinge length and ultimate drift calculations of frames are required in the performance based design of reinforce concrete structure. FRP-confinement increases the column’s shear resistance and ductility. FRP-confinement prevents concrete cover from spalling and increases the inelastic deformability of concrete in the potential plastic hinge region. GU et al. 2012 [24] studied the existing experimental results of confinement effects on the plastic hinge length. Mortezaei and Ronagh, 2012 [25], studied the plastic... 

    Catodic Protection Design & Installation of Rebars in Reinforced Concrete by MMO Anodes

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Mohammad Reza (Author) ; Dolati, Abolghasem (Supervisor) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    The cathodic protection system was employed for protection of the reinforced concrete of the foundations using the mixed metal oxide anodes embedded in concrete for current distribution. . In this system, after required measurements for zone design calculation of the surfaces current density, IR drop and the circuit’s resistance has been measured. After specifying the appropriate locations for the reference Electrodes (Ag/AgCl) in order for cathodic protection monitoring these three electrodes are installed in three protection zones. After design and supply of all the materials, the installation was started. The protection criterion of steel in concrete was studied and all the measured...