Loading...
Search for: reinforced-plastics
0.011 seconds
Total 116 records

    Fracture Modeling of Strengthened Arc Concrete Structures with FRP by Concrete Damage Plasticity and XFEM

    , M.Sc. Thesis Sharif University of Technology Navid Tehrani, Yousef (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Usage of FRP material is developed in recent year, because advantages of this material researcher studied the effect of this strengthening method on beam column and masonry structures, but few research’s related to RC arches that strengthen with FRP. This studies showed performance of structure properties but many parameters influence. In this research, a model developed that can model RC arch with FRP till complete failure, after verifying model with experimental result parametric study done. This parameter are effect of strengthening scheme, influence of shape of arch and geometry of arches. Concrete damage plasticity used for modeling behavior of concrete, also for modeling interface... 

    Investigation of Dynamic Behavior of Concrete Slabs Reinforced with GFRP Bars and Prestressed Concrete Slabs under Impact Loading

    , Ph.D. Dissertation Sharif University of Technology Sadraie, Hamid (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Prestressed and reinforced concrete slabs are common structural elements that could be exposed to impact loading. Although, use of reinforced concrete slabs and utilization of Fiber Reinforced Polymer (FRP) as alternative to traditional steel reinforcement slabs are growing, but the influence of various parameters on their response under impact loads is not properly evaluated. In addition, studies on steel reinforced concrete slabs have been found in literature, but investigation of prestressed slabs and GFRP reinforced concrete slabs under impact load is limited. This study investigated the effect of rebar’s material, amount and arrangement of reinforcements, concrete strength and slab... 

    Strengthening Reinforced Concrete Deep Beams Using FRP Systems

    , M.Sc. Thesis Sharif University of Technology Mesgarian, Iman (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    In recent years, the development of the plate bonding repair technique has been shown to be applicable to many existing strengthening problems in the building industry. This technique may be defined as one in which composite sheets or plates of relatively small thickness are bonded with an epoxy adhesive to, in most cases, a concrete structure to improve its structural behaviour and strength. The sheets or plates do not require much space and give a composite action between the adherents. The old structure and the new bonded-on material create a new structural element that has a higher strength and stiffness than original one. According to the available methods of analysis and design for... 

    A Study on the Effect of Different Lubrication Methods on Surface Integrity and Tool Wear during Ultrasonic-Assisted Milling of CFRP

    , M.Sc. Thesis Sharif University of Technology Amirnia, Mahan (Author) ; Akbari, Javad (Supervisor)
    Abstract
    The aim of this study was to compare the effect of different cooling conditions (dry, flood, mql) on machined surface parameters (smoothness and protrusion of fibers) and tool erosion in carbon fiber reinforced plastic composite materials (CFRP) in the presence of ultrasonic vibrations or without it. Is. Today, carbon fiber reinforced plastic composite materials or CFRP have become one of the most widely used materials in industry due to their strength and light properties. For example, these materials have been used in the manufacture of products from commercial aircraft to shoes, tennis rackets, golf clubs, fishing rods, etc. The combination of carbon fibers woven with resin in alternating... 

    Behavior of Concrete Frames Reinforced with FRP Bars

    , M.Sc. Thesis Sharif University of Technology Tafarroji, Armin (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    FRP rebars due to various properties such as high resistance to weight ratio, high corrosion resistance, high tensile strength, low weight, resistance to electrical and magnetic conductivity, and other desirable properties, have always been an interesting topic for researchers as an alternative to steel rebars in special conditions.In this research, a two-dimensional sway intermediate concrete frame with three stories and two bays reinforced with GFRP bars was designed and studied. Unlike previous researches and design codes, the compressive strength of the bars was considered in the design process. With computer coding in Matlab software, column interaction diagrams and a special contour... 

    Fabrication and Investigation of Structure and Mechanical Properties of Bagasse Fibers Reinforced PP: Role of Alkalization and Calcium Carbonate Filler

    , M.Sc. Thesis Sharif University of Technology Asgharpour, Ali (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    The consumption of plastics in the world is increasing and this is accompanied by the challenges of production from oil products and carbon footprint, waste production and environmental issues. The solutions to these challenges are material recycling and the production of biocompatible plastics. Polypropylene is a widely used polymer that is commonly used in conjunction with reinforcements such as fiberglass. Natural fibers can be substituted to increase the biocompatibility of the composite, which, despite its many advantages, presents challenges. The most important challenge is the poor adhesion of the fibers and the matrix due to the hydrophilicity of natural fibers and hydrophobicity of... 

    Effect Of Longitudinally Ultrasonic Assisted Milling On Surface Integrity of CFRP Composites

    , M.Sc. Thesis Sharif University of Technology Charkhian, Ali (Author) ; Akbari, Javad (Supervisor)
    Abstract
    Nowadays, processes with the ability to machine advanced materials are very much needed by industries. Therefore, compare of a rotary ultrasonic-assisted machining process with a conventional machining process is carried out in this study. In order to evaluate this process, the milling and drilling processes are conducted on the carbon fiber-reinforced polymer composite and titanium materials where cutting forces, surface roughness, and fiber pull-out are selected as critical factors for analysis. As a result, it is seen that rotary ultrasonic-assisted machining has a good performance in the milling and drilling of advanced materials. In particular, it is shown that fiber pull-out is... 

    Hot deformation behavior of P/M Al6061-20% SiC composite

    , Article 2006 Powder Metallurgy World Congress and Exhibition, PM 2006, Busan, 24 September 2006 through 28 September 2006 ; Volume 534-536, Issue PART 2 , 2007 , Pages 897-900 ; 02555476 (ISSN); 0878494197 (ISBN); 9780878494194 (ISBN) Asgharzadeh, H ; Simchi, A
    Trans Tech Publications Ltd  2007
    Abstract
    In the present work, hot workability of particulate-reinforced Al6061-20%SiC composite produced by direct hot extrusion technique was studied. Uniaxial hot compression test at various temperatures and strain rates was used and the workability behavior was evaluated from the flow curves and the attendant microstructures. It was shown that the presence of SiC particles in the soft Al6061 matrix deteriorates the hot workability. Bulging of the specimens and flow lines were observed, which indicates the plastic instability during hot working. Microstructure of the composites after hot deformation was found to be heterogeneous, i.e. the reinforcement clusters were observed at the flow lines. The... 

    Finite element analysis of a CFRP reinforced retaining wall

    , Article Geomechanics and Engineering ; Volume 10, Issue 6 , 2016 , Pages 757-774 ; 2005307X (ISSN) Ouria, A ; Toufigh, V ; Desai, C ; Toufigh, V ; Saadatmanesh, H ; Sharif University of Technology
    Techno Press 
    Abstract
    Soils are usually weak in tension therefore different materials such as geosynthetics are used to address this inadequacy. Worldwide annual consumption of geosynthetics is close to 1000 million m2, and the value of these materials is probably close to US$1500 million. Since the total cost of the construction is at least four or five times the cost of the geosynthetic itself, the impact of these materials on civil engineering construction is very large indeed. Nevertheless, there are several significant problems associated with geosynthetics, such as creep, low modulus of elasticity, and susceptibility to aggressive environment. Carbon fiber reinforced polymer (CFRP) was introduced over two... 

    Friction stir lap joining of aluminium alloy to polypropylene sheets

    , Article Science and Technology of Welding and Joining ; Volume 22, Issue 2 , 2017 , Pages 120-126 ; 13621718 (ISSN) Shahmiri, H ; Movahedi, M ; Kokabi, A. H ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    Joining feasibility of aluminium alloy to polypropylene sheets via friction stir lap joining was examined. Effects of heat-input on microstructure and mechanical behaviour of the joints were investigated. A covering plate was used to confine flow of molten polymer. The results showed a distinctive interaction layer at polymer/aluminium interface, consisted mainly of C, O and Al. Shear strength of the joints decreased by enhancement of the heat-input due to increase in the thickness of the interaction layer as well as the gap width between this layer and both aluminium and polymer matrices. Maximum shear-tensile strength of 5.1MPa (∼20% of polymer shear strength) was obtained, which was... 

    Roll bonding of AA5052 and polypropylene sheets: bonding mechanisms, microstructure and mechanical properties

    , Article Journal of Adhesion ; 2016 , Pages 1-25 ; 00218464 (ISSN) Rezaei Anvar, B ; Akbarzadeh, A ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    Structural, microstructural and mechanical properties in roll bonding of AA5052 and polypropylene sheets have been evaluated in this study. The surface roughness of the AA5052 sheets, rolling temperature and the surface energy of polymer were selected as the bonding variables. The findings indicated that an increase in the surface energy of polypropylene by grafting maleic anhydride would result in higher bonding strength due to chemical interaction between the AA5052 and the maleic anhydride grafted polypropylene (PP-g-MAH). In fact, this reaction caused the formation of an interphase layer at the polymer side of the interface and the diffusion of aluminum into the PP-g-MAH layer. It was... 

    Roll bonding of AA5052 and polypropylene sheets: bonding mechanisms, microstructure and mechanical properties

    , Article Journal of Adhesion ; Volume 93, Issue 7 , 2017 , Pages 550-574 ; 00218464 (ISSN) Rezaei Anvar, B ; Akbarzadeh, A ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    Structural, microstructural and mechanical properties in roll bonding of AA5052 and polypropylene sheets have been evaluated in this study. The surface roughness of the AA5052 sheets, rolling temperature and the surface energy of polymer were selected as the bonding variables. The findings indicated that an increase in the surface energy of polypropylene by grafting maleic anhydride would result in higher bonding strength due to chemical interaction between the AA5052 and the maleic anhydride grafted polypropylene (PP-g-MAH). In fact, this reaction caused the formation of an interphase layer at the polymer side of the interface and the diffusion of aluminum into the PP-g-MAH layer. It was... 

    Melt compounding of thermoplastic polyurethanes incorporating 1D and 2D carbon nanofillers

    , Article Polymer - Plastics Technology and Engineering ; Volume 56, Issue 7 , 2017 , Pages 732-743 ; 03602559 (ISSN) Yuan, D ; Pedrazzoli, D ; Pircheraghi, G ; Manas Zloczower, I ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    Thermoplastic polyurethane nanocomposites incorporating carbon nanotubes and graphene nanoplatelets were prepared through melt blending and compression molding, and the compounding process was optimized taking into account the different physical properties of one-dimensional carbon nanotubes and two-dimensional graphene nanoplatelets. Filler dispersion was further improved in the case of carbon nanotubes by noncovalent surface modification using a specific surfactant. The well-dispersed nanofillers favored enhanced phase separation in the thermoplastic polyurethane, leading to a better microstructure, which is able to improve the load transfer and maximize the tensile and viscoelastic... 

    Behavior of polymer concrete beam/pile confined with CFRP sleeves

    , Article Mechanics of Advanced Materials and Structures ; Volume 26, Issue 4 , 2019 , Pages 333-340 ; 15376494 (ISSN) Toufigh, V ; Toufigh, V ; Saadatmanesh, H ; Ahmari, S ; Kabiri, E ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    This research investigates the flexural behavior of a polymer concrete beam/pile encased with carbon fiber sleeve. The mechanical properties of carbon fiber sleeves in tension and cement and polymer concrete in compression were determined. Polymer concrete beams were tested in flexure to determine the bending moment capacity. Then, the test results were compared to the theoretical model results. Finally, a parametric study was conducted to determine the influence of beam/pile parameters on the capacity of the element. Based on the investigation, carbon fiber sleeve filled with polymer concrete exhibits outstanding structural performance including ductility and bending capacity  

    Environmental effects on the bond at the interface between FRP and wood

    , Article European Journal of Wood and Wood Products ; Volume 76, Issue 1 , 2018 , Pages 163-174 ; 00183768 (ISSN) Yarigarravesh, M ; Toufigh, V ; Mofid, M ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    The advantages of fiber reinforced polymer (FRP), such as high specific strength, resistance against corrosion and formability, have made it a more acceptable alternative to conventional materials regarding repairing and retrofitting of structures. Although investigations in recent years have proved the concern of civil engineers about the environmental effects on the bond between FRP and concrete or masonry (especially moisture and temperature), only few researches have been reported on FRP-wood interfaces. This research investigated the effect of five different environments on the bond at the interface between FRP and wood. A series of pull-out tests were performed on 375 wood specimens... 

    On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk

    , Article Engineering with Computers ; Volume 37, Issue 3 , 2021 , Pages 2369-2388 ; 01770667 (ISSN) Safarpour, M ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    This is the first research on the nonlinear frequency analysis of a multi-scale hybrid nanocomposite (MHC) disk (MHCD) resting on an elastic foundation subjected to nonlinear temperature gradient and mechanical loading is investigated. The matrix material is reinforced with carbon nanotubes (CNTs) or carbon fibers (CF) at the nano- or macroscale, respectively. We present a modified Halpin–Tsai model to predict the effective properties of the MHCD. The displacement–strain of nonlinear vibration of multi-scale laminated disk via third-order shear deformation theory (TSDT) and using Von Karman nonlinear shell theory is obtained. Hamilton’s principle is employed to establish the governing... 

    Experimental comparison of cyclic behavior of RC columns strengthened with TRC and FRP

    , Article Bulletin of Earthquake Engineering ; Volume 19, Issue 7 , 2021 , Pages 2941-2970 ; 1570761X (ISSN) Azadvar, N ; Zargaran, M ; Rahimzadeh Rofooei, F ; Attari, N. K. A ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Seven half-scale reinforced concrete (RC) columns with supporting beam were experimentally studied under combined axial and lateral cyclic loading. The specimens were categorized in two groups based on reinforcement ratios. Three specimens were strengthened with carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) sheets. Other specimens were strengthened using a high strength mortar reinforced with textile mesh (textile reinforced concrete (TRC)). Strengthening of specimens were carried out using a vertical layer and a horizontal layer of FRP sheet or two vertical and two horizontal layers of textile meshes for TRC specimens. Since the weight of each layer of... 

    On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk

    , Article Engineering with Computers ; 2020 Safarpour, M ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer  2020
    Abstract
    This is the first research on the nonlinear frequency analysis of a multi-scale hybrid nanocomposite (MHC) disk (MHCD) resting on an elastic foundation subjected to nonlinear temperature gradient and mechanical loading is investigated. The matrix material is reinforced with carbon nanotubes (CNTs) or carbon fibers (CF) at the nano- or macroscale, respectively. We present a modified Halpin–Tsai model to predict the effective properties of the MHCD. The displacement–strain of nonlinear vibration of multi-scale laminated disk via third-order shear deformation theory (TSDT) and using Von Karman nonlinear shell theory is obtained. Hamilton’s principle is employed to establish the governing... 

    Experimental investigation of square RC column strengthened with near surface mounted GFRP bars subjected to axial and cyclic lateral loads

    , Article Scientia Iranica ; Volume 20, Issue 5 , 2013 , Pages 1361-1371 ; 10263098 (ISSN) Dayhim, N ; Nicknam, A ; Barkhordari, M. A ; Hosseini, A ; Mehdizad, S ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    This article is intended to highlight the effectiveness of longitudinal Glass Fiber Reinforced Polymer (GFRP) bars in combination with GFRP sheets on the flexural capacity of Reinforced Concrete (RC) columns. Seven half-scale RC columns including five strengthened and two control unstrengthened specimens were experimentally tested under axial and cyclic lateral loads. The strengthened columns with two different longitudinal GFRP bar ratios were tested under three different axial load levels. The flexural strength and ductility parameters of the specimens were calculated by obtaining their deformations and measuring the loads from load cells. The experimental results indicate significant... 

    Determining shear capacity of ultra-high performance concrete beams by experiments and comparison with codes

    , Article Scientia Iranica ; Volume 26, Issue 1A , 2019 , Pages 273-282 ; 10263098 (ISSN) Pourbaba, M ; Joghataie, A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this research, 19 specimens of ultra-high performance fiber-reinforced concrete rectangular beams were made and their shear resistance was determined experimentally. The results were compared with estimations by ACI 318, RILEM TC 162-TDF, Australian guideline, and Iranian national building regulations. To compare the code estimations, the ratio of experimental shear strength to predicted shear strength was calculated for each code. This ratio is in fact a measure of safety factor on the one hand and a measure of precision of the estimation on the other hand. Based on the results of both studies, the authors concluded that the Australian guideline, with the amount of 2.5, provided the...