Loading...
Search for: relative-density
0.006 seconds
Total 27 records

    Modeling of the Mechanical Behavior of Rapid Prototyped Scaffolds Based on Their Pore Architecture and Introducing a Prototyping Method to Produce Ceramic Scaffolds

    , Ph.D. Dissertation Sharif University of Technology Amirkhani, Soodeh (Author) ; Bagheri, Reza (Supervisor) ; Baghaban Eslaminejad, Mohamad Reza (Supervisor)
    Abstract
    Mechanical behavior of tissue engineering scaffolds plays a key role in their biological performance; however the effect of microstructural features on mechanical behavior of such scaffolds is still under investigation. The objective of this study was to investigate the influence of pore architecture and relative density on mechanical behavior of rapid prototyped scaffolds. In this regard, scaffolds with different cubic, hexagonal and trigonal unit cells were designed. These unit cells were repeated in different arrangements in 3D space to produce different nodal connectivities. The internal dimension of pores varied from 500 to 600 μm. Plastic models of scaffolds then fabricated by 3D... 

    Validity of menard relation in dynamic compaction operations

    , Article Proceedings of the Institution of Civil Engineers: Ground Improvement ; Volume 162, Issue 1 , 2009 , Pages 37-45 ; 17550750 (ISSN) Ghassemi, A ; Pak, A ; Shahir, H ; Sharif University of Technology
    2009
    Abstract
    Dynamic compaction (DC) is a common soil improvement technique, used extensively worldwide. DC treatment design is usually based upon empirical relations and past experience. The common problem with all empirical relations is oversimplification of the mechanisms, and the use of parameters that are highly dependent on engineering judgement. In this paper, a developed finite-element code is used for modelling the impact behaviour of dry and moist sandy soil. The code is verified against the results of centrifuge tests. Then the validity of the popular Menard empirical relation for determination of improvement depth in DC design is investigated. The effect of initial relative density, tamper... 

    Synthesis and characterization of diopside glass-ceramic matrix composite reinforced with aluminum titanate

    , Article Ceramics International ; Volume 35, Issue 4 , 2009 , Pages 1447-1452 ; 02728842 (ISSN) Yousefi, M ; Alizadeh, P ; Eftekhari Yekta, B ; Molaie, F ; Ghafoorian, N ; Montazerian, M ; Sharif University of Technology
    2009
    Abstract
    Glass-ceramic composites in the SiO2-CaO-MgO-(Na2O) system, reinforced with 5, 10 and 20 wt.% aluminum titanate were synthesized by pressureless sintering. Optimum sintering temperatures with maximum relative density were determined for each composition. The composites were fired above the crystallization peak temperature of glass-ceramic. Mechanical properties of glass-ceramic and sintered composites, such as fracture toughness, flexural strength and Vickers microhardness, were investigated. The sintered composites were characterized by scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS) and X-ray diffraction (XRD). The results showed that the composite containing 10... 

    Pressureless sintering of Ta0.8Hf0.2C UHTC in the presence of MoSi2

    , Article Ceramics International ; Volume 39, Issue 2 , 2013 , Pages 1985-1989 ; 02728842 (ISSN) Ghaffari, S. A ; Faghihi Sani, M. A ; Golestani Fard, F ; Ebrahimi, S ; Sharif University of Technology
    2013
    Abstract
    Ta0.8Hf0.2C ceramic has the highest melting point among the known materials (4000 °C). However, this high melting point makes the ceramic difficult to be sintered at temperatures lower than 2300 °C, pressurelessly. The purpose of this study is to consolidate Ta 0.8Hf0.2C UHTC by pressureless sintering at 2000 °C using MoSi2 as sintering aid. In this regard, effect of different amounts of MoSi2 on sintering behavior of Ta0.8Hf 0.2 UHTC was investigated. It was observed that condensation of the UHTC after sintering at 2000 °C was enhanced by increasing MoSi2 content and the highest relative density of 95% was obtained in the presence of 24 vol.% MoSi2. XRD pattern of the sintered UHTC... 

    Particle dispersion dependency on the entrance position in bidirectional flow

    , Article Particulate Science and Technology ; Volume 31, Issue 6 , 2013 , Pages 576-584 ; 02726351 (ISSN) Dehghani, S. R ; Saidi, M. H ; Mozafari, A. A ; Soleimani, F ; Sharif University of Technology
    2013
    Abstract
    This article presents a process of numerically predicting and experimentally verifying the dispersion quality and penetration level of fuel particles entering and moving in various directions relative to vortex engine walls. If the length scale of particles considered in this study is not comparable to the chamber length and, furthermore, the density is ignored, the effect of the particle on the flow field can be neglected and a one-way solution will be viable for the problem. The solutions in each case are carried out to estimate the particle trajectory and parameters affecting it. The governing equations are converted to a set of nonlinear, coupled, ordinary differential equations (ODEs)... 

    Modeling of large deformation frictional contact in powder compaction processes

    , Article Applied Mathematical Modelling ; Volume 32, Issue 5 , 2008 , Pages 775-801 ; 0307904X (ISSN) Khoei, A. R ; Keshavarz, Sh ; Khaloo, A. R ; Sharif University of Technology
    2008
    Abstract
    In this paper, the computational aspects of large deformation frictional contact are presented in powder forming processes. The influence of powder-tool friction on the mechanical properties of the final product is investigated in pressing metal powders. A general formulation of continuum model is developed for frictional contact and the computational algorithm is presented for analyzing the phenomena. It is particularly concerned with the numerical modeling of frictional contact between a rigid tool and a deformable material. The finite element approach adopted is characterized by the use of penalty approach in which a plasticity theory of friction is incorporated to simulate sliding... 

    Manipulating failure mechanism of rapid prototyped scaffolds by changing nodal connectivity and geometry of the pores

    , Article Journal of Biomechanics ; Volume 45, Issue 16 , 2012 , Pages 2866-2875 ; 00219290 (ISSN) Amirkhani, S ; Bagheri, R ; Zehtab Yazdi, A ; Sharif University of Technology
    2012
    Abstract
    The performance of cellular solids in biomedical applications relies strongly on a detailed understanding of the effects of pore topology on mechanical properties. This study aims at characterizing the failure mechanism of scaffolds based on nodal connectivity (number of struts that meet in joints) and geometry of the pores. Plastic models of scaffolds having the same relative density but different cubic and trigonal unit cells were designed and then fabricated via three dimensional (3-D) printing. Unit cells were repeated in different arrangements in 3-D space. An in-situ imaging technique was utilized to study the progressive deformation of the scaffold models. Different nodal... 

    Large deformation of shape-memory polymer-based lattice metamaterials

    , Article International Journal of Mechanical Sciences ; Volume 232 , 2022 ; 00207403 (ISSN) Pirhaji, A ; Jebellat, E ; Roudbarian, N ; Mohammadi, K ; Movahhedy, M. R ; Asle Zaeem, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Through advanced computational analysis, this work demonstrates that metamaterial structures when made by shape-memory polymers (SMPs) can provide unique intelligent mechanical behavior. For the first time, geometrical effects, pertaining to low and ultra-low densities, on the thermomechanical behavior of SMP-based octet-truss lattice meta-structures are studied in this work. A reliable constitutive thermo-visco-hyperelastic model is applied to analyze the shape-memory behavior of several designed octet-truss lattices with ultra-low and low relative densities, ranging from 0.04 to 0.23. Different compressive strain values are tested to determine the effect of pre-straining. It is concluded... 

    Investigation on the characteristics of micro- and nano-structured W-15 wt.%Cu composites prepared by powder metallurgy route

    , Article International Journal of Refractory Metals and Hard Materials ; Volume 30, Issue 1 , 2012 , Pages 145-151 ; 02634368 (ISSN) Abbaszadeh, H ; Masoudi, A ; Safabinesh, H ; Takestani, M ; Sharif University of Technology
    2012
    Abstract
    The properties of W-15 wt.%Cu composites were investigated by preparing two distinct composites of micrometer and nanoscale structures. Micrometer composite was produced by mixing elemental W and Cu powders and nanometer one was synthesized through a mechanochemical reaction between WO3 and CuO powders. Subsequent compaction and sintering process was performed to ensure maximum possible densification at 1000-1200 °C temperatures. Finally, the behavior of produced samples including relative density, hardness, compressive strength, electrical conductivity, coefficient of thermal expansion (CTE) and room temperature corrosion resistance were examined. Among the composites, nano-structured... 

    Interpretation of CPT in unsaturated sands under drained conditions: A numerical study

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 45, Issue 18 , 2021 , Pages 2732-2755 ; 03639061 (ISSN) Keshmiri, E ; Ahmadi, M. M ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    A finite difference-based numerical model simulating the cone penetration process in unsaturated sands is presented. Mohr–Coulomb model (MCM) with simple modifications and Sun model (SM) were implemented to capture the unsaturated sand behaviour. It was shown that the cone tip resistance values resulting from the two models were fairly comparable. Predicted cone tip resistance values in dry, saturated and unsaturated sands using MCM were validated by the results of field and calibration chamber tests. Sensitivity analyses were performed, and the influence of parameters including relative density, mean effective stress and apparent cohesion due to suction on the tip resistance was... 

    In situ horizontal stress from CPT in sand: a new approach

    , Article International Journal of Geotechnical Engineering ; 2017 , Pages 1-9 ; 19386362 (ISSN) Ahmadi, M. M ; Golestani Dariani, A. A ; Sharif University of Technology
    Abstract
    Despite the various approaches in the literature adopted for analysing cone penetration test (CPT), determination of the initial horizontal stress and relative density of a sandy soil during this test has not been tackled yet. In order to propose a new method in this regard, a numerical study of CPT has been performed and the predicted results have been compared with several databases of comprehensive calibration chamber tests. The penetration mechanism has been then fully investigated by presenting different kinds of outputs for the surrounding soil. Finally, an innovative procedure has been suggested for estimating the initial horizontal stress and relative density during performing CPT in... 

    In situ horizontal stress from CPT in sand: a new approach

    , Article International Journal of Geotechnical Engineering ; Volume 13, Issue 6 , 2019 , Pages 538-547 ; 19386362 (ISSN) Ahmadi, M. M ; Golestani Dariani, A. A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Despite the various approaches in the literature adopted for analysing cone penetration test (CPT), determination of the initial horizontal stress and relative density of a sandy soil during this test has not been tackled yet. In order to propose a new method in this regard, a numerical study of CPT has been performed and the predicted results have been compared with several databases of comprehensive calibration chamber tests. The penetration mechanism has been then fully investigated by presenting different kinds of outputs for the surrounding soil. Finally, an innovative procedure has been suggested for estimating the initial horizontal stress and relative density during performing CPT in... 

    In situ horizontal stress from CPT in sand: a new approach

    , Article International Journal of Geotechnical Engineering ; Volume 13, Issue 6 , 2019 , Pages 538-547 ; 19386362 (ISSN) Ahmadi, M. M ; Golestani Dariani, A. A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Despite the various approaches in the literature adopted for analysing cone penetration test (CPT), determination of the initial horizontal stress and relative density of a sandy soil during this test has not been tackled yet. In order to propose a new method in this regard, a numerical study of CPT has been performed and the predicted results have been compared with several databases of comprehensive calibration chamber tests. The penetration mechanism has been then fully investigated by presenting different kinds of outputs for the surrounding soil. Finally, an innovative procedure has been suggested for estimating the initial horizontal stress and relative density during performing CPT in... 

    Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties

    , Article Ceramics International ; Volume 39, Issue 3 , April , 2013 , Pages 2197-2206 ; 02728842 (ISSN) Aminzare, M ; Eskandari, A ; Baroonian, M. H ; Berenov, A ; Razavi Hesabi, Z ; Taheri, M ; Sadrnezhaad, S. K ; Sharif University of Technology
    2013
    Abstract
    Two different hydroxyapatite based composites reinforced by oxide ceramic (20 wt%) nano crystals were synthesized by high-energy ball milling and sintered by pressure less technique. Alumina and titania nanoparticles as secondary phases improved densification and mechanical behavior of apatite and postponed its decomposition to the tricalcium phosphate (TCP) phases at elevated temperatures. Increasing the relative density of apatite using nano reinforcements leads to enhance the bending strength by more than 40% and 27% (as compared to the pure HA) and increase the hardness from 2.52 to 5.12 (Al2O3 composite) and 4.21 (TiO2 addition) GPa, respectively. Transmission electron microscopy (TEM),... 

    High voltage SnO2 varistors prepared from nanocrystalline powders

    , Article Journal of Materials Science: Materials in Electronics ; Volume 21, Issue 2 , 2010 , Pages 199-205 ; 09574522 (ISSN) Shahraki, M. M ; Shojaee, S. A ; Nemati, A ; Sani, M. A. F ; Sharif University of Technology
    2010
    Abstract
    In this study, SnO 2-based varistors were prepared from mechanically activated nanocrystalline powders. Nanocrystalline powders were derived by subjecting the initial powders to intensive high-energy activation with different times and ball to powder ratio. The effect of activation parameters on the powder properties and sintering temperature, as well as microstructural, micro-electrical and macro-electrical properties of the final specimens was evaluated. Varistors derived from high-energy mechanical activation exhibit a higher density (98.3% relative density) and more refined microstructure upon sintering at 1,300 °C in comparison varistors prepared from conventional powders. Breakdown... 

    Fabrication of SiC body by microwave sintering process

    , Article Journal of Materials Science: Materials in Electronics ; Volume 28, Issue 7 , 2017 , Pages 5675-5685 ; 09574522 (ISSN) Ahmadbeygi, S ; Khodaei, M ; Nemati, A ; Yaghobizadeh, O ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    In the present study, SiC samples with 3, 5, 7.5 and 10 wt% Al2O3–Y2O3 as additives were made by powder metallurgy method, then sintering was performed by microwave-assisted process. β–SiC samples sintering was performed for 100 min. The highest sintered relative density 91.06% was achieved at 10 wt% additives content. The maximum values of hardness and toughness were up to 23.3 GPa and 6.14 MPa.m− 1/2. α–SiC and α–SiC/β–SiC samples sintering was performed for 120 min. The maximum value of density and hardness were up to 96.38% T.D and 24.88 GPa in α–SiC with 7.5 wt% additives, whereas the highest toughness was achieved at 10 wt% additives content in β–SiC samples. The α–SiC samples... 

    Experimental study on dynamic properties of sand with emphasis on the degree of saturation

    , Article Soil Dynamics and Earthquake Engineering ; Volume 32, Issue 1 , 2012 , Pages 26-41 ; 02677261 (ISSN) Jafarzadeh, F ; Sadeghi, H ; Sharif University of Technology
    Abstract
    Cyclic drained and undrained tests were performed in a modified simple shear device in order to specifically investigate the effect of saturation ratio on shear modulus and damping parameters of sand. In addition to the degree of saturation, the effects of number of cycles, vertical consolidation stress, shear strain amplitude and relative density on dynamic properties of sand were investigated. Dynamic stiffness and damping characteristic were found to be substantially independent of saturation ratio in the range of 25-75%. However, by approaching the full saturation state, the values of modulus fall sharply and damping of loose samples increases dramatically from corresponding values of... 

    Effect of sintering temperature and siliconcarbide fraction on density, mechanical properties and fracture mode of alumina-silicon carbide micro/nanocomposites

    , Article Materials and Design ; Volume 37 , May , 2012 , Pages 251-255 ; 02641275 (ISSN) Rahimnejad Yazdi, A ; Baharvandi, H ; Abdizadeh, H ; Purasad, J ; Fathi, A ; Ahmadi, H ; Sharif University of Technology
    2012
    Abstract
    In this study Al2O3-SiC micro/nanocomposites have been fabricated by mixing alumina nanopowders and silicon carbide micro/nanopowders, followed by hot pressing at 1550, 1600, 1650 and 1700°C. The density, mechanical properties and fracture mode of Al2O3-SiC composites containing different volume fractions (2.5%, 5%, 7.5%, 10% and 15%) of micro/nanoscale SiC particles were investigated and compared with those of alumina. The relative density of composites could reach values very close to theoretical density, especially after sintering at 1700°C. However, relative density declined by increasing the SiC fraction at the same sintering temperature. The flexural strength of composites was best for... 

    Effect of different parameters on steady state and monotonic liquefaction of gravelly soils

    , Article Geotechnical Special Publication, 17 March 2015 through 21 March 2015 ; Volume GSP 256 , March , 2015 , Pages 2034-2048 ; 08950563 (ISSN) ; 9780784479087 (ISBN) Payan, M ; Ayoubi, P ; Mirmo'Azen, S. M ; Sharif University of Technology
    American Society of Civil Engineers (ASCE)  2015
    Abstract
    In the current research, the main concern is to verify the behavior of gravelly soils. To that matter, with taking use of CU triaxial tests and variations in parameters of interest, gradation, relative density, isotropic pressure and anisotropy of consolidation during the tests, the effects on the steady state condition and monotonic liquefaction of gravelly soils are investigated. The test results indicated that as the isotropic pressure increases, percentage increase of steady state strength resulting from the increase of relative density will decrease. Moreover, with the increase of anisotropy of consolidation, the effect of relative density on steady state strength and built-up pore... 

    Dynamic modeling of powder compaction processes via a simple contact algorithm

    , Article International Journal of Mechanical Sciences ; Volume 64, Issue 1 , 2012 , Pages 196-210 ; 00207403 (ISSN) Khoei, A. R ; Biabanaki, S. O. R ; Parvaneh, S. M ; Sharif University of Technology
    2012
    Abstract
    In this paper, the dynamic modeling of powder compaction processes is presented based on a simple contact algorithm to evaluate the distribution of final density in dynamic powder die-pressing. The large deformation frictional contact is employed by imposing the contact constraints via the contact node-to-surface formulation and modifying the contact properties of frictional slip. The Coulomb friction law is used to simulate the friction between the rigid punch and the work-piece. The nonlinear contact friction algorithm is employed together with a double-surface cap plasticity model within the framework of large FE deformation in order to predict the non-uniform relative density...