Loading...
Search for: renewable-energy-systems
0.013 seconds

    Optimal design of renewable integrated heat and electricity supply systems with genetic algorithm: household application in Iran

    , Article International Journal of Environmental Science and Technology ; Volume 17, Issue 4 , 2020 , Pages 2185-2196 Rezaei Mirghaed, M ; Saboohi, Y ; Sharif University of Technology
    Springer  2020
    Abstract
    The objective of the present study is the development of an optimization model for identifying the best configuration of renewable-based integrated energy systems. The system includes a combination of renewable energy systems such as wind, solar, hydropower and hydrogen production, storage facilities and conventional fossil-fuel generators. The developed tool consists of various modules where water heating assumes the utilization of waste energy as an option. Furthermore, the application, which is demonstrated for a case study in Tehran, has been considered. The power exchange with the distribution network and injection of hydrogen produced from excess renewable sources into gas network are... 

    Shape-controlled synthesis of thorn-like 1D phosphorized Co supported by Ni foam electrocatalysts for overall water splitting

    , Article Journal of Materials Science: Materials in Electronics ; Volume 32, Issue 13 , 2021 , Pages 18363-18370 ; 09574522 (ISSN) Nourmohammadi, Khiarak, B ; Asaadi Zahraei, A ; Nazarzadeh, K ; Akbari Hasanjani, H. R ; Mohammadzadeh, H ; Sharif University of Technology
    Springer  2021
    Abstract
    A cost-effective, durable, and easy-to-produce improvement in bifunctional electrocatalysts for water splitting is crucial for future renewable energy systems. In this present study, shape-controlled one-dimensional (1D) phosphorized cobalt (CoP) on 3D porous nickel foam (NiF) was synthesized through successive treatment of commercial NiF with acetone and ethanol, followed by hydrothermal growth of Co and final process of phosphorization by thermochemical reactions. The evaluations of products proved reduced overpotential (270 mV at 10 mA. cm−2 for hydrogen evolution reaction (HER) process and a low overpotential of 320 mV to reach a high current density of 20 mA. cm−2), low Tafel slope... 

    An online method for MILP co-planning model of large-scale transmission expansion planning and energy storage systems considering N-1 criterion

    , Article IET Generation, Transmission and Distribution ; Volume 15, Issue 4 , 2021 , Pages 664-677 ; 17518687 (ISSN) Mazaheri, H ; Abbaspour, A ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Farzin, H ; Wang, F ; Dehghanian, P ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    In recent years, increased integration of renewable energy sources (RES) calls for extensive and costly investments in transmission networks. In response, power system decision-makers try to apply alternative solutions aimed to decrease the imposed investment costs. In this context, the presence of large-scale energy storage systems (ESSs) in transmission network can be a practical option for deferring investment in expansion plans of transmission lines, alleviating system congestions, and attaining higher flexibility. In this paper, an efficient model is proposed for co-planning expansion studies of compressed air energy storage (CAES) units and transmission networks. The associated... 

    Load frequency control (LFC) strategies in renewable energy‐based hybrid power systems: a review

    , Article Energies ; Volume 15, Issue 10 , 2022 ; 19961073 (ISSN) Gulzar, M. M ; Iqbal, M ; Shahzad, S ; Muqeet, H. A ; Shahzad, M ; Hussain, M. M ; Sharif University of Technology
    MDPI  2022
    Abstract
    The hybrid power system is a combination of renewable energy power plants and conventional energy power plants. This integration causes power quality issues including poor settling times and higher transient contents. The main issue of such interconnection is the frequency variations caused in the hybrid power system. Load Frequency Controller (LFC) design ensures the reliable and efficient operation of the power system. The main function of LFC is to maintain the system frequency within safe limits, hence keeping power at a specific range. An LFC should be supported with modern and intelligent control structures for providing the adequate power to the system. This paper presents a... 

    Optimization of operating parameters in a hybrid wind-hydrogen system using energy and exergy analysis: Modeling and case study

    , Article Energy Conversion and Management ; Volume 106 , December , 2015 , Pages 1318-1326 ; 01968904 (ISSN) Fakehi, A. H ; Ahmadi, S ; Mirghaed, M. R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this study, hybrid renewable energy system based on wind/electrolyzer/PEM fuel cell are conceptually modeled, and also, exergy and energy analysis are performed. The energy and exergy flows are investigated by the proposed model for Khaf region-Iran with high average wind speed and monsoon. Exergy and energy analysis framework is made based on thermodynamic, electro-chemical and mechanical model of the different component of hybrid system. Also, the effects of various operating parameters in exergy efficiency are calculated. The results show an optimum wind speed where the exergy efficiency and power coefficient is at maximum level, and also, when the ambient temperature start to be... 

    Sensible and latent thermal energy storage with constructal fins

    , Article International Journal of Hydrogen Energy ; Volume 42, Issue 28 , 2017 , Pages 17681-17691 ; 03603199 (ISSN) Eslami, M ; Bahrami, M. A ; Sharif University of Technology
    Abstract
    Energy storage is one of the most important components of renewable energy systems. Among different methods, thermal energy storage (TES) in forms of sensible or latent has been the subject of many studies in the past decades. The main difficulty in optimal design of storage tanks is associated with low thermal conductivity of the storing (solid or phase change) material. In fact, the distribution of thermal energy from a source to the body of storing material poses a volume to point problem which is the subject of constructal theory. Therefore, the objective of the present paper is to investigate the transient behavior of a rectangular thermal energy storage tank equipped with fin... 

    Multi objective receding horizon optimization for optimal scheduling of hybrid renewable energy system

    , Article Energy and Buildings ; Volume 150 , 2017 , Pages 583-597 ; 03787788 (ISSN) Behzadi Forough, A ; Roshandel, R ; Sharif University of Technology
    Abstract
    In this paper, a methodology for energy management system (EMS) based on the multi-objective receding horizon optimization (MO-RHO) is presented to find the optimal scheduling of hybrid renewable energy system (HRES). The proposed HRES which is experimentally installed in educational building comprising the PV panels, wind turbine, battery bank and diesel generator as the backup system. The data acquisition system provides input profiles for receding horizon optimizer. A mixed-integer convex programing technique is used to achieve the optimal operation regarding to two conflicting operation objectives including diesel fuel cost and battery wear cost. The Pareto frontiers are presented to... 

    Lifetime optimization framework for a hybrid renewable energy system based on receding horizon optimization

    , Article Energy ; Volume 150 , 1 May , 2018 , Pages 617-630 ; 03605442 (ISSN) Behzadi Forough, A ; Roshandel, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this work, a novel convex sequence framework for real-time receding horizon operation optimization of a hybrid renewable energy system integrated with optimal sizing is presented to increase the penetration rate of renewable energy in supplying the demand. The proposed framework optimizes the entire lifetime cost of a system consisting of two main steps which are 1) design & installation and 2) operation as two sequence modules. This framework is applied to a hybrid renewable energy system which includes PV, wind turbine, batteries and a diesel generator. In the operation optimization, receding horizon strategy is used to optimize the operation schedule. Mixed integer convex programming... 

    A novel lifetime prediction method for lithium-ion batteries in the case of stand-alone renewable energy systems

    , Article International Journal of Electrical Power and Energy Systems ; Volume 103 , 2018 , Pages 115-126 ; 01420615 (ISSN) Astaneh, M ; Dufo López, R ; Roshandel, R ; Bernal Agustin, J. L ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper presents a mathematical formulation of lithium-ion batteries, including aging and temperature effects. The model is developed by integrating the simplified single particle model (SSPM) and reduced-order model (ROM) to predict solid electrolyte interphase growth (SEI). Results show agreement with the experimental data at 25 °C operating temperature and moderate cycling currents. A maximum error of 3.6% in finding the battery discharged Ah is observed in harsh operating conditions, including 60 °C and approaching the end of life of the battery. Due to the typical operating conditions of stand-alone renewable energy systems, more accurate estimations are expected. Finally, this... 

    A novel framework for optimization of size and control strategy of lithium-ion battery based off-grid renewable energy systems

    , Article Energy Conversion and Management ; Volume 175 , 2018 , Pages 99-111 ; 01968904 (ISSN) Astaneh, M ; Roshandel, R ; Dufo López, R ; Bernal Agustín, J. L ; Sharif University of Technology
    Abstract
    This paper proposes a new methodology to find the most economic system configuration and energy management strategy for Li-ion battery based off-grid renewable energy systems. A system level macroscopic model and a microscopic battery lifetime prediction model are incorporated into the optimization framework to simulate hourly performance of the system. Due to the computational efficiency of the model, optimization is carried out using enumerative method (evaluating all the possible combinations of components and control strategies) to ensure finding the global optimum solution of the problem. To investigate the effectiveness of the proposed methodology, the optimization results are compared... 

    A computationally efficient Li-ion electrochemical battery model for long-term analysis of stand-alone renewable energy systems

    , Article Journal of Energy Storage ; Volume 17 , 2018 , Pages 93-101 ; 2352152X (ISSN) Astaneh, M ; Dufo Lopez, R ; Roshandel, R ; Golzar, F ; Bernal Agustin, J. L ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper we introduce a Simplified Single Particle Model (SSPM), which is obtained from the general mathematical formulation of Li-ion batteries. The model is validated by using different commercial graphite/LiFePO4 cells, and results show agreement with more complicated models and experimental data for low operating currents of less than 1C. A maximum relative error of less than 2% can be observed to estimate cell voltage in the plateau region of the charge/discharge curves. Therefore, the proposed model is suitable in the case of stand-alone renewable energy systems, where battery current is typically lower than C/10. By increasing the current, the SSPM deviates from more accurate... 

    Technical, economic, carbon footprint assessment, and prioritizing stations for hydrogen production using wind energy: a case study

    , Article Energy Strategy Reviews ; Volume 36 , 2021 ; 2211467X (ISSN) Almutairi, K ; Hosseini Dehshiri,S ; Hosseini Dehshiri, J ; Mostafaeipour, A ; Jahangiri, M ; Techato, K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    While Afghanistan's power sector is almost completely dependent on fossil fuels, it still cannot meet the rising power demand of this country. Deploying a combination of renewable energy systems with hydrogen production as the excess energy storage mechanism could be a sustainable long-term approach for addressing some of the energy problems of Afghanistan. Since Badakhshan is known to have a higher average wind speed than any other Afghan province, in this study, a technical, economic, and carbon footprint assessment was performed to investigate the potential for wind power and hydrogen production in this province. Wind data of four stations in Badakhshan were used for technical assessment... 

    A review on pulsating heat pipes: from solar to cryogenic applications

    , Article Applied Energy ; Volume 222 , 15 July , 2018 , Pages 475-484 ; 03062619 (ISSN) Alhuyi Nazari, M ; Ahmadi, M. H ; Ghasempour, R ; Behshad Shafii, M ; Mahian, O ; Kalogirou, S ; Wongwises, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Pulsating heat pipes (PHPs) are compact cooling equipment used for various applications. This type of heat pipes can be used in renewable energy systems, cooling electronic devices, heat recovery systems and many other applications. Since PHPs have superior thermal performance, by applying them in energy systems enhance their efficiency. In addition, PHPs are a reliable medium for cooling various devices which have high heat flux. In this study, various works conducted on the applications of PHPs are reviewed and analyzed. It is concluded that PHPs are efficient and reliable devices for utilization in various energy systems. Moreover, at very low temperatures, such as cryogenic applications,...