Loading...
Search for: reservoir-models
0.006 seconds

    Application Of Artificial Intelligence In Well Test Data Interpretation

    , M.Sc. Thesis Sharif University of Technology Salim Mehr, Mahdi (Author) ; Masihi, Mohsen (Supervisor) ; Shadizadeh, Reza (Supervisor)
    Abstract
    Well-Testing is a one of the usual methods in petroleum engineering for evaluating reservoir and well parameters. This method is based on measuring downhole pressure verses time in different production conditions and then drawing these data in different pressure-time graphs and evaluating reservoir characteristics and calculating reservoir parameters. This thesis describes the development of techniques for the automation of the model identification and parameter estimation of a well test interpretation, using Artificial Intelligence. The computer programs which are written in MATLAB software use Neutral Network toolbox to detect a model that is based on the pressure derivative curve, and... 

    Real-time oil Reservoir Characterization by Assimilation of Production Data

    , Ph.D. Dissertation Sharif University of Technology Biniaz Delijani, Ebrahim (Author) ; Pishvaie, Mahmoud Reza (Supervisor) ; Bozorgmehry Boozarjomehry, Ramin (Supervisor)
    Abstract
    Hydrocarbon reservoirs development and management is based on their dynamic models. To encounter various types of error during model building, model parameters are adjusted to produce reservoir historical data by assimilation (history matching) of reservoir production or 4D seismic data. Among the existing sequential methods for automatic history matching, ensemble Kalman filter and its variants have displayed promising results. The innovations of this thesis for ensemble Kalman filter (EnKF) are presented into three major orients; these includes adaptive localization/regularization, characterization of original PUNQ test model and characterization of channelized reservoir.
    To mitigate... 

    Development of Low-order Model/controllers for Oil Reservoir Smart Wells

    , M.Sc. Thesis Sharif University of Technology Hemmati, Sahar (Author) ; Pishvaie, Mahmoud Reza (Supervisor)
    Abstract
    Upstream oil industry operators have turned to optimal production methods for further recoveries, such as smart wells. Control algorithms for smart wells must be equipped with online measurements, in other words, reflected in the feedback philosophy. On the other hand, after discretization, an oil reservoir's dynamic and control-driven model becomes a realization or a large-scale and sparse state space. One way to deal with this problem and provide an appropriate model for the design of smart well controllers is to use appropriate reservoir dimensional reduction methods. Therefore, to design low-order controllers, a study must first be performed at the level of the reservoir model and its... 

    Intelligent and Sequential Reservoir Model Updating and Uncertainty Assessment during EOR Process

    , Ph.D. Dissertation Sharif University of Technology Jahanbakhshi, Saman (Author) ; Pishvaie, Mahmoud Reza (Supervisor) ; Bozorgmehry Boozarjomehry, Ramin (Supervisor)
    Abstract
    Hydrocarbon reservoir management and development as well as planning of enhanced oil recovery (EOR) processes are based on the reservoir dynamic model. Thus, successful implementation of EOR scenarios greatly depends on the quality of the dynamic model and accuracy of the associated parameters in order to correctly describe fluid flow through porous media. First, a dynamic model is constructed based on the prior knowledge. However, because of the various types of error during model building, the prior model is not so accurate and perfect. Accordingly, new observation data, such as production and 4D seismic data, are utilized to calibrate the prior model and characterize the reservoir under a... 

    Water propagation in two-dimensional petroleum reservoirs

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 445 , 2016 , Pages 102-111 ; 03784371 (ISSN) Najafi, M. N ; Ghaedi, M ; Moghimi Araghi, S ; Sharif University of Technology
    Elsevier 
    Abstract
    In the present paper we investigate the problem of water propagation in 2 dimensional (2D) petroleum reservoir in which each site has the probability p of being occupied. We first analyze this propagation pattern described by Darcy equations by focusing on its geometrical features. We find that the domain-walls of this model at p=pc ≃ 0.59 are Schramm-Loewner evolution (SLE) curves with κ=3.05 ∓ 0.1 consistent with the Ising universality class. We also numerically show that the fractal dimension of these domain-walls at p=pc is Df ≃ 1.38 consistent with SLEκ=3. Along with this analysis, we introduce a self-organized critical (SOC) model in which the water movement is modeled by a chain of... 

    Utilization of percolation approach to evaluate reservoir connectivity and effective permeability: A case study on North Pars gas field

    , Article Scientia Iranica ; Vol. 18, issue. 6 , December , 2011 , p. 1391-1396 ; ISSN: 10263098 Sadeghnejad, S ; Masihi, M ; Pishvaie, M ; Shojaei, A ; King, P. R ; Sharif University of Technology
    Abstract
    Reservoir characterization, especially during early stages of reservoir life, is very uncertain, due to the scarcity of data. Reservoir connectivity and permeability evaluation is of great importance in reservoir characterization. The conventional approach to addressing this is computationally very expensive and time consuming. Therefore, there is a great incentive to produce much simpler alternative methods. In this paper, we use a statistical approach called the percolation theory, which considers a hypothesis wherein the reservoir can be split into either permeable (i.e. sand/fracture) or impermeable flow units (i.e. shale/matrix), and assumes that the connectivity of permeability... 

    Utilization of percolation approach to evaluate reservoir connectivity and effective permeability: A case study on North Pars gas field

    , Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1391-1396 ; 10263098 (ISSN) Sadeghnejad, S ; Masihi, M ; Pishvaie, M ; Shojaei, A ; King, P. R ; Sharif University of Technology
    2011
    Abstract
    Reservoir characterization, especially during early stages of reservoir life, is very uncertain, due to the scarcity of data. Reservoir connectivity and permeability evaluation is of great importance in reservoir characterization. The conventional approach to addressing this is computationally very expensive and time consuming. Therefore, there is a great incentive to produce much simpler alternative methods. In this paper, we use a statistical approach called the percolation theory, which considers a hypothesis wherein the reservoir can be split into either permeable (i.e. sand/fracture) or impermeable flow units (i.e. shale/matrix), and assumes that the connectivity of permeability... 

    Streamline-based history matching constrained to reservoir geostatistics using gradual deformation technique

    , Article Petroleum Science and Technology ; Volume 29, Issue 17 , 2011 , Pages 1765-1777 ; 10916466 (ISSN) Shojaei, H ; Pishvaie, M. R ; Kamali, M. R ; Badakhshan, A ; Sharif University of Technology
    Abstract
    A new and general procedure for history matching that uses streamline simulation and a gradual deformation technique has been proposed. Streamline trajectories define the major flow paths and help the algorithm to modify the reservoir model only in the regions that cause the mismatch between simulation results and field observations. The use of a gradual deformation technique enables the algorithm to remain constrained to reservoir geostatistics. It also reduces the number of independent variables in the optimization problem. In our algorithm, effective conductivities are defined along each streamline. The effective streamline conductivities are then adjusted using the values of measured and... 

    Spring hydrograph simulation of karstic aquifers: impacts of variable recharge area, intermediate storage and memory effects

    , Article Journal of Hydrology ; Volume 552 , 2017 , Pages 225-240 ; 00221694 (ISSN) Hosseini, S. M ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Abstract
    A simple conceptual rainfall–runoff model is proposed for the estimation of groundwater balance components in complex karst aquifers. In the proposed model the effects of memory length of different karst flow systems of base-flow, intermediate-flow, and quick-flow and also time variation of recharge area (RA) during a hydrological year were investigated. The model consists of three sub-models: soil moisture balance (SMB), epikarst balance (EPB), and groundwater balance (GWB) to simulate the daily spring discharge. The SMB and EPB sub-models utilize the mass conservation equation to compute the variation of moisture storages in the soil cover and epikarst, respectively. The GWB sub-model... 

    New technique for calculation of well deliverability in gas condensate reservoirs

    , Article Journal of Natural Gas Science and Engineering ; Vol. 2, issue. 1 , March , 2010 , p. 29-35 ; ISSN: 18755100 Sadeghi Boogar, A ; Masihi, M ; Sharif University of Technology
    Abstract
    Well deliverability is an important issue in forecasting the performance of many gas condensate reservoirs. Condensate accumulations near the wellbore may cause a significant reduction in the well productivity, even in the case of very lean fluids. Generally, the well deliverability is affected by two pressure-drop sources due to depletion and condensate buildup. Recently rapid spreadsheet tools have been developed to evaluate the well performance using material balance equation for depletion and two-phase pseudo pressure integral for well inflow performance. Most of them account for the effects of negative inertia and positive coupling in the calculation of gas relative permeabilities. This... 

    New technique for calculation of well deliverability in gas condensate reservoirs

    , Article Journal of Natural Gas Science and Engineering ; Volume 2, Issue 1 , 2010 , Pages 29-35 ; 18755100 (ISSN) Sadeghi Boogar, A ; Masihi, M ; Sharif University of Technology
    2010
    Abstract
    Well deliverability is an important issue in forecasting the performance of many gas condensate reservoirs. Condensate accumulations near the wellbore may cause a significant reduction in the well productivity, even in the case of very lean fluids. Generally, the well deliverability is affected by two pressure-drop sources due to depletion and condensate buildup. Recently rapid spreadsheet tools have been developed to evaluate the well performance using material balance equation for depletion and two-phase pseudo pressure integral for well inflow performance. Most of them account for the effects of negative inertia and positive coupling in the calculation of gas relative permeabilities. This... 

    New technique for calculation of well deliverability in gas condensate reservoir

    , Article Deep Gas Conference and Exhibition 2010, DGAS 2010 ; January , 2010 , p. 51-59 ; SPE Deep Gas Conference and Exhibition, 24-26 January, Manama, Bahrain Publication Date 2010 Gerami, S ; Sadeghi, A ; Masihi, M ; Sharif University of Technology
    Abstract
    Well deliverability is an important issue in forecasting the performance of many gas condensate reservoirs. Condensate accumulation near the wellbore can cause a significant reduction in productivity, even in reservoirs where the fluid is very lean. Generally, the well deliverability is affected by two pressure-drop sources due to depletion and condensate buildup. Recently Rapid spreadsheet tools have developed to evaluate the well performance using material balance equation for depletion and two-phase pseudo pressure integral for well inflow performance. Most of them account for the effects of negative inertia and positive coupling in the calculation of gas relative permeability. This paper... 

    New technique for calculation of well deliverability in gas condensate reservoir

    , Article Deep Gas Conference and Exhibition 2010, DGAS 2010, 24 January 2010 through 26 2010 ; January , 2010 , Pages 51-59 ; 9781617381065 (ISBN) Gerami, S ; Sadeghi, A ; Masihi, M ; Sharif University of Technology
    2010
    Abstract
    Well deliverability is an important issue in forecasting the performance of many gas condensate reservoirs. Condensate accumulation near the wellbore can cause a significant reduction in productivity, even in reservoirs where the fluid is very lean. Generally, the well deliverability is affected by two pressure-drop sources due to depletion and condensate buildup. Recently Rapid spreadsheet tools have developed to evaluate the well performance using material balance equation for depletion and two-phase pseudo pressure integral for well inflow performance. Most of them account for the effects of negative inertia and positive coupling in the calculation of gas relative permeability. This paper... 

    Impact of initial ensembles on posterior distribution of ensemble-based assimilation methods

    , Article Journal of Petroleum Science and Engineering ; Volume 171 , 2018 , Pages 82-98 ; 09204105 (ISSN) Jahanbakhshi, S ; Pishvaie, M. R ; Bozorgmehry Boozarjomehry, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this study, impact of initial ensembles on posterior distribution of ensemble-based assimilation methods is statistically analyzed. Along with, sampling performance as well as uncertainty quantification of these methods are compared in terms of their ability to accurately and consistently evaluate unknown reservoir model parameters and reservoir future performance. For this purpose, a synthetic test problem, which is a small but highly nonlinear reservoir model under two-phase flow, is utilized. Subsequently, different initial ensemble sets are considered and are updated through the assimilation process performed on the test problem using ensemble-based assimilation methods. Afterwards,... 

    Estimating the connected volume of hydrocarbon during early reservoir life by percolation theory

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, issue. 3 , Nov , 2014 , p. 301-308 ; ISSN: 15567036 Sadeghnejad, S ; Masihi, M ; Pishvaie, M ; Shojaei, A ; King, P. R ; Sharif University of Technology
    Abstract
    The petroleum industry tends to paint an optimistic picture with respect to future petroleum availability. In order to anticipate demand, the size of connected volume of hydrocarbon of fields needs to be known. During the early stage of life of a reservoir, due to the lake of certain data, connected volume of hydrocarbon is usually based on analogues or rules of thumb and not detailed reservoir modeling. Therefore, there is a great incentive to produce physically-based methodologies to make an estimation of connected volume of hydrocarbon. Percolation theory is used to estimate the connected volume of hydrocarbon very fast. Furthermore, the result has been validated against areal field... 

    Data-driven approach for evaluation of formation damage during the injection process

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 10, Issue 2 , 2020 , Pages 699-710 Shabani, A ; Jahangiri, H. R ; Shahrabadi, A ; Sharif University of Technology
    Springer  2020
    Abstract
    Waterflooding is among the most common oil recovery methods which is implemented in the most of oil-producing countries. The goal of a waterflooding operation is pushing the low-pressure remained oil of reservoir toward the producer wells to enhance the oil recovery factor. One of the important objects of a waterflooding operation management is understanding the quality of connection between the injectors and the producers of the reservoir. Capacitance resistance model (CRM) is a data-driven method which can estimate the production rate of each producer and the connectivity factor between each pair of wells, by history matching of the injection and production data. The estimated connectivity... 

    A quantitative and qualitative comparison of coarse grid generation techniques for numerical simulation of flow in heterogeneous porous media

    , Article SPE Reservoir Simulation Symposium 2009, The Woodlands, TX, 2 February 2009 through 4 February 2009 ; Volume 1 , 2009 , Pages 55-73 ; 9781605607771 (ISBN) Mostaghimi Qomi, P ; Mahani, H ; Firoozabadi, B ; Landmark; HALLIBURTON ; Sharif University of Technology
    2009
    Abstract
    Applying upscaling techniques is an undeniable demand in reservoir simulation, considering the difference between level of details in a geological model and level of details that can be handled by reservoir simulators. Upscaling reservoir model involves first constructing a coarse grid by employing gridding algorithms and then computing average properties for coarse grid blocks. Although various techniques have been proposed for each of these steps, one has to be aware of strengths and weaknesses of each technique before attempting to apply them. In this paper, we focus on different gridding methods and evaluate their performances. Three main grid generation techniques are considered:...