Loading...
Search for: resonant-frequencies
0.007 seconds
Total 68 records

    Active performance optimization of cantilever piezoelectric energy harvester

    , Article ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2014 ; Vol. 2 , 2014 ; ISBN: 9780791845844 Anbarani, M. T ; Alasty, A ; Sharif University of Technology
    Abstract
    A Piezoelectric Energy Harvester (PEH) of cantilever beam type is developed to optimize the generated power by means of active control of moment of inertia of the beam. Distributed parameter equations of vibration of the beam are developed. Then the electromechanical response of the piezoelectric actuator is discussed. The harvester configuration is then described and it is shown that such a configuration can avoid the drastic power drop in presence of uncertainty around resonance frequency by applying voltage to the piezoelectric actuator. Finally the proposed harvester output power working frequency span is compared to conventional methods to show that the significant performance... 

    Electromechanical resonators based on electrospun ZnO nanofibers

    , Article Journal of Micro/ Nanolithography, MEMS, and MOEMS ; Vol. 13,Issue. 4 , 2014 ; ISSN: 19325150 Fardindoost, S ; Mohammadi, S ; Zad, A. I ; Sarvari, R ; Shariatpanahi, S. P ; Sharif University of Technology
    Abstract
    We present fabrication, characterization, and experimental results describing electrical actuation and readout of the mechanical vibratory response of electrospun ZnO nanofibers. For a fiber with an approximate radius of 200 nm and a length of 70 ìm, a resonance frequency around 3.62 MHz with a quality factor (Q) of about 235 in air at ambient conditions is observed. It is shown that the measured frequency of the resonance is consistent with results from finite element simulations. Also, the measurements were performed in an enclosed chamber with controlled levels of ethanol vapor. The adsorption of ethanol causes a shift in the resonance frequency of the fibers, which can be related to the... 

    Raman random laser in one-dimensional system

    , Article Journal of the Optical Society of America B: Optical Physics ; Vol. 31, Issue. 6 , 2014 , Pages 1308-1315 ; ISSN: 07403224 Bahrampour, A ; Shojaie, E ; Sani, M ; Sharif University of Technology
    Abstract
    The probability of occurrence of random cavities' resonance frequency in the Stokes bandwidth of the Raman active medium can cause Raman laser oscillation in the random structures. Due to the small bandwidth of Raman line shape, the probability of the simultaneous appearance of random cavity resonance frequencies in the cascade Stokes line shapes is small. As a result, the cascade Raman laser oscillation effects on the saturation behavior are negligible. The nonlinear transmission matrix method is employed to determine the statistical behavior of a Raman random laser. Our results showed that the statistical behavior depends on the position of the Stokes line shape relative to the center of... 

    Vibration analysis of a graphene nanoribbon under harmonic lorentz force using a hybrid modal-molecular dynamics method

    , Article International Journal of Structural Stability and Dynamics ; Vol. 14, issue. 2 , 2014 ; ISSN: 02194554 Firouz-Abadi, R. D ; Mohammadkhani, H ; Amini, H ; Sharif University of Technology
    Abstract
    An efficient hybrid modal-molecular dynamics method is developed for the vibration analysis of large scale nanostructures. Using the reduced order method, presented in this paper, linear and nonlinear vibrations of a suspended graphene nanoribbon (GNR) carrying an electric current in a harmonic magnetic field are investigated. The resonance frequencies as well as the nonlinear vibration response obtained by the present technique and direct molecular dynamic simulations are in very good agreement. Also, the obtained results illustrate the hardening behavior of nonlinear vibrations which is diminished by stretching the GNR  

    Study of the behavior of ultrasonic piezo-ceramic actuators by simulations

    , Article Electronic Materials Letters ; Vol. 10, Issue. 1 , 2014 , pp. 37-42 ; ISSN: 17388090 Abdullah, A ; Pak, A ; Abdullah, M. M ; Shahidi, A ; Malaki, M ; Sharif University of Technology
    Abstract
    In recent years, there has been a growing interest in the simulation and analysis of piezoelectric transducers with the he help of equivalent electrical circuit simulations (EECS). This paper has been devoted to study of such approach for two designed and fabricated ultrasonic sandwich transducers. By using analytical analysis, the dimensions of components of the two piezoelectric transducers were determined for the assumed resonance frequencies of 30 kHz and 40 kHz. Then, by using a two dimensional finite element model, and regarding two different modeling techniques for the transducers and by application of a current source which was connected directly to the piezoelectric pieces of the... 

    Design and implementation of a single phase grid-connected PV inverter with a new active damping strategy

    , Article PEDSTC 2014 - 5th Annual International Power Electronics, Drive Systems and Technologies Conference ; Feb , 2014 , pp. 72-77 Hamzeh, M ; Karimi, Y ; Asadi, E ; Oraee, H ; Sharif University of Technology
    Abstract
    This paper presents an effective current injection method for a single phase grid-connected PV inverter with LCL filter. The main objective of the proposed control strategy is to compensate the resonance effect of the LCL filter. In the proposed control strategy, a resonance compensator is augmented to the conventional proportional resonance (PR) controller to attenuate current oscillations in resonance frequency of LCL filter. The proposed strategy robustly regulates the output current of grid connected inverter in various grid impedances and provides a high quality current injection capability for the PV inverter in harmonic polluted condition of the grid voltage. The performance of the... 

    Free vibrations of single walled carbon peapods

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Vol. 56 , February , 2014 , pp. 410-413 Firouz-Abadi, R. D ; Hojjati, M ; Rahmanian, M ; Sharif University of Technology
    Abstract
    In this paper the free vibration of single walled carbon nanopeapods encapsulating C60 molecules is considered. The nanopeapod is embedded in an elastic medium and clamped at both ends. The Euler-Bernoulli beam model is used for the carbon nanotube and the C60 molecules are considered as lumped masses attached to the beam. Based on the nonlocal elasticity theory the governing equation of motion is derived and the resonance frequencies of the nanopeapod are obtained. The effects of small scale, foundation stiffness and ratio of the fullerenes' mass to the nanotube's mass on the frequencies are studied and some conclusions are drawn  

    A tunable high-Q active inductor with a feed forward noise reduction path

    , Article Scientia Iranica ; Volume 21, Issue 3 , 2014 , Pages 945-952 ; ISSN: 10263098 Moezzi, M ; Bakhtiar, M. S ; Sharif University of Technology
    Abstract
    The analysis and design of a tunable low noise active inductor is presented. The noise performance of the proposed gyrator-based active inductor is improved without either degrading its quality factor or consuming more power using a linear Feed Forward Path (FFP). The proposed low noise active inductor has been designed and fabricated using standard 0.18-μm CMOS technology. The measurements show a 3 fold improvement in the input noise current compared to that of conventional active inductors. The active inductor was tuned and measured at the resonance frequency of 2.5 GHz, which could be extended as high as 5.5 GHz, with a quality factor of 30. The circuit draws 4.8 mA from a 1.8 V supply  

    Magnetoelastic instability of a long graphene nano-ribbon carrying electric current

    , Article Advances in Applied Mathematics and Mechanics ; Vol. 6, issue. 3 , 2014 , pp. 299-306 ; ISSN: 20700733 Firouz-Abadi, R. D ; Mohammadkhani, H ; Sharif University of Technology
    Abstract
    This paper aims at investigating the resonance frequencies and stability of a long Graphene Nano-Ribbon (GNR) carrying electric current. The governing equation of motion is obtained based on the Euler-Bernoulli beam model along with Hamilton's principle. The transverse force distribution on the GNR due to the interaction of the electric current with its own magnetic field is determined by the Biot-Savart and Lorentz force laws. Using Galerkin's method, the governing equation is solved and the effect of current strength and dimensions of the GNR on the stability and resonance frequencies are investigated  

    Phase-shifterless phase-noise measurement of microwave oscillators using high-Q cavity frequency discriminator

    , Article 81st ARFTG Microwave Measurement Conference: Metrology for High Speed Circuits and Systems ; 2013 ; 9781467349826 (ISBN) Gheidi, H ; Banai, A ; Sharif University of Technology
    2013
    Abstract
    This paper presents application of high-Q cavity resonator in phase-shifter less technique. A mathematical analysis is presented to show the dependency of the measured phase noise in terms of loaded quality factor and resonance frequency of the high-Q cavity resonator. Experimental measurements resulted from different methods for a synthesized oscillator at 9.976 GHz show great validity and accuracy of the proposed technique. This technique needs no tuning for the phase-shifter and can introduce better sensitivity compared to the setup that uses a delay-line as a frequency discriminator element due to much lower insertion loss particularly at high carrier frequencies. The sensitivity of -113... 

    Electromechanical resonator based on electrostatically actuated graphene-doped PVP nanofibers

    , Article Nanotechnology ; Volume 24, Issue 13 , 2013 ; 09574484 (ISSN) Fardindoost, S ; Mohammadi, S ; Zad, A. I ; Sarvari, R ; Shariat Panahi, S. P ; Jokar, E ; Sharif University of Technology
    2013
    Abstract
    In this paper we present experimental results describing electrical readout of the mechanical vibratory response of graphene-doped fibers by employing electrical actuation. For a fiber resonator with an approximate radius of 850 nm and length of 100 m, we observed a resonance frequency around 580 kHz with a quality factor (Q) of about 2511 in air at ambient conditions. Through the use of finite element simulations, we show that the reported frequency of resonance is relevant. We also show that the resonance frequency of the fiber resonators decreases as the bias potential is increased due to the electrostatic spring-softening effect  

    Resonant optical absorption and defect control in Ta3N 5 photoanodes

    , Article Applied Physics Letters ; Volume 102, Issue 3 , 2013 ; 00036951 (ISSN) Dabirian, A ; Van De Krol, R ; Sharif University of Technology
    2013
    Abstract
    In this study, we explore resonance-enhanced optical absorption in Ta 3N5 photoanodes for water splitting. By using a reflecting Pt back-contact and appropriate Ta3N5 film thickness, the resonance frequency can be tuned to energies just above the bandgap, where the optical absorption is normally weak. The resonance results in a significant improvement in the photoanode's incident photon-to-current efficiency. The Ta3N5 films are made by high-temperature nitridation of Ta2O5. The nitridation time is found to be critical, as extended nitridation result in the formation of nitrogen vacancies through thermal reduction. These insights give important clues for the development of efficient... 

    The oscillatory behavior of doubly clamped microgyroscopes under electrostatic actuation and detection

    , Article Proceedings of the ASME Design Engineering Technical Conference ; Volume 1 , 2013 ; 9780791855843 (ISBN) Mojahedi, M ; Firoozbakhsh, K ; Ahmadian, M. T ; Computers and Information in Engineering Division; Design Engineering Division ; Sharif University of Technology
    American Society of Mechanical Engineers  2013
    Abstract
    In MEMS gyroscopes, it is essential to use matched resonance frequencies of the drive and sense vibrational modes for improving the sensitivity. For this end, the natural frequencies can be tuned by voltages. In this study, a new model is utilized to determine the natural frequencies of the doubly clamped beam microgyroscope. In the model, nonlinear electrostatic forces, fringing fields and mid-plane stretching of thebeam are considered. The system is actuated and sensed by electrostatic force and its natural frequencies and stiffness are detuned by DC voltages. The oscillatory problem of the gyroscope is analytically solved versus DC voltages for different design parameters. Copyright  

    Resonance frequencies and stability of two flexible permanent magnetic beams facing each other

    , Article Journal of Sound and Vibration ; Volume 331, Issue 26 , 2012 , Pages 5745-5754 ; 0022460X (ISSN) Firouz Abadi, R. D ; Mohammadkhani, H ; Sharif University of Technology
    2012
    Abstract
    This paper aims at investigating the interaction of two flexible permanent magnet beams facing each other. The governing equations of motion are obtained based on the Euler-Bernoulli beam model along with Hamiltons principle. Assuming that the beams tips are far enough, each magnet beam is considered as a series of dipole segments and the external force and moment distributions over each beam due to the magnetic field of the other one is calculated in the deformed configuration. The transverse deflections of the beams are written as series expansions of the mode shapes of an unloaded cantilever beam and the Galerkin method is applied to determine the stability and resonance frequencies.... 

    A new control strategy for a multi-bus MV microgrid under unbalanced conditions

    , Article IEEE Transactions on Power Systems ; Volume 27, Issue 4 , 2012 , Pages 2225-2232 ; 08858950 (ISSN) Hamzeh, M ; Karimi, H ; Mokhtari, H ; Sharif University of Technology
    2012
    Abstract
    This paper proposes a new control strategy for the islanded operation of a multi-bus medium voltage (MV) microgrid. The microgrid consists of several dispatchable electronically-coupled distributed generation (DG) units. Each DG unit supplies a local load which can be unbalanced due to the inclusion of single-phase loads. The proposed control strategy of each DG comprises a proportional resonance (PR) controller with an adjustable resonance frequency, a droop control strategy, and a negative-sequence impedance controller (NSIC). The PR and droop controllers are, respectively, used to regulate the load voltage and share the average power components among the DG units. The NSIC is used to... 

    Assessment of the resonance frequency of cantilever carbon nanocones using molecular dynamics simulation

    , Article Applied Physics Letters ; Volume 100, Issue 17 , 2012 ; 00036951 (ISSN) Firouz Abadi, R. D ; Amini, H ; Hosseinian, A. R ; Sharif University of Technology
    2012
    Abstract
    The resonance frequencies of cantilever carbon nanocones (CNCs) up to 4 nm in height are determined using molecular dynamics simulation based on adaptive intermolecular reactive empirical bond order potential. The frequency content of the free vibrations of CNCs under a lateral initial excitation at the tip is analyzed using fast Fourier transformation, and the resonance frequencies are obtained. The results are reported for various samples to investigate the dependency of the resonance frequency to the geometrical parameters and temperature of CNCs  

    Parametric study of the dynamic response of thin rectangular plates traversed by a moving mass

    , Article Acta Mechanica ; Volume 223, Issue 1 , September , 2012 , Pages 15-27 ; 00015970 (ISSN) Nikkhoo, A ; Rofooei, F. R ; Sharif University of Technology
    2012
    Abstract
    The governing differential equation of motion of a thin rectangular plate excited by a moving mass is considered. The moving mass is traversing on the plate's surface at arbitrary trajectories. Eigenfunction expansion method is employed to solve the constitutive equation of motion for various boundary conditions. Approximate and exact expressions of the inertial effects are adopted for the problem formulation. In the approximate formulation, only the vertical acceleration component of the moving mass is considered while in the exact formulation all the convective acceleration components are included in the problem formulation as well. Parametric studies are carried out to investigate the... 

    Optimal LQR-based multi-loop linear control strategy for UPS inverter applications using resonant controller

    , Article Proceedings of the IEEE Conference on Decision and Control, 12 December 2011 through 15 December 2011, Orlando, FL ; 2011 , Pages 3080-3085 ; 01912216 (ISSN) ; 9781612848006 (ISBN) Hasanzadeh, A ; Edrington, C. S ; Maghsoudlou, B ; Mokhtari, H ; Sharif University of Technology
    2011
    Abstract
    This paper presents an optimal multi-loop control structure for uninterruptible power supply (UPS) applications which use voltage source inverter (VSI) coupled with LC filter. A resonant controller ensures tracking of sinusoidal voltage reference and rejection of sinusoidal current disturbance with no steady-state error if the loop remains stable. The challenges are reduction of output total harmonic distortion (THD), improving damping of the LC resonance frequency and preventing generation of fast closed-loop modes which go beyond the frequency range of inverter with limited switching frequency. An extension of the classic linear quadratic regulator (LQR) is proposed which addresses the... 

    Modeling and optimization of an ultrasonic setup basedon combination of finite element method and mathematical full factorial design

    , Article Advanced Materials Research, 6 August 2011 through 7 August 2011, Dalian ; Volume 320 , 2011 , Pages 553-558 ; 10226680 (ISSN) ; 9783037852118 (ISBN) Ghahramani Nick, M ; Akbari, J ; Movahhedy, M. R ; Hoseini, S. M ; Sharif University of Technology
    2011
    Abstract
    Ultrasonic assisted machining (UAM) is an efficient nontraditional machining operation for brittle, hard-to-cut and poor-machinability materials. In UAM, high frequency oscillation in ultrasonic range at low amplitude is imposed on the workpiece or cutting tool. In most cases, the equipments that generates and transfers the vibration, have a complicated structure, and requires significant effort to achieve their optimum function. In this work, a mathematical model is developed and an optimization method is employed for design process. This makes it possible to achieve proper setup and reduce the amount of calculation. For this purpose, the combination of a two level full factorial design is... 

    Compound Hertzian chain model for copper-carbon nanocomposites' absorption spectrum

    , Article Micro and Nano Letters ; Volume 6, Issue 4 , 2011 , Pages 277-279 ; 17500443 (ISSN) Kokabi, A ; Hosseini, M ; Saeedi, S ; Moftakharzadeh, A ; Vesaghi, M. A ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    The infrared range optical absorption mechanism of carbon-copper composite thin layer coated on the diamond-like carbon buffer layer has been investigated. By consideration of weak interactions between copper nanoparticles in their network, optical absorption is modelled using their coherent dipole behaviour induced by the electromagnetic radiation. The copper nanoparticles in the bulk of carbon are assumed as a chain of plasmonic dipoles, which have coupling resonance. Considering nearest neighbour interactions for this metallic nanoparticles, surface plasmon resonance frequency (ω 0) and coupled plasmon resonance frequency (ω 1) have been computed. The damping rate against wavelength is...