Loading...
Search for: retention-time
0.006 seconds
Total 36 records

    The effects of a hydrochloric acid pre-treatment on the physicochemical properties and pozzolanic performance of rice husk ash

    , Article Cement and Concrete Composites ; Volume 39 , 2013 , Pages 131-140 ; 09589465 (ISSN) Gholizadeh Vayghan, A ; Khaloo, A. R ; Rajabipour, F ; Sharif University of Technology
    2013
    Abstract
    This paper investigates the effects of acid normality (0.01-6 N HCl) and combustion retention time (0.25- 16 hours) on the pozzolanic properties of pre-combustion acid-treated rice husk ash. The pozzolanic reactivity was quantified by adding ground ash to saturated Ca(OH)2 solutions and monitoring the time-dependent electrical conductivity and pH of the solutions. Also, the strength activity of ashes from different processes was measured by testing the compressive strength of mortars. It was observed that acid treatment results in ashes with higher SiO2 content, lower alkali and unburned carbon content, better grindability, and smaller particle size, in comparison with ash from non-acid... 

    Chromatographic fingerprint analysis of secondary metabolites in citrus fruits peels using gas chromatography-mass spectrometry combined with advanced chemometric methods

    , Article Journal of Chromatography A ; Volume 1251 , 2012 , Pages 176-187 ; 00219673 (ISSN) Parastar, H ; Jalali Heravi, M ; Sereshti, H ; Mani Varnosfaderani, A ; Sharif University of Technology
    2012
    Abstract
    Multivariate curve resolution (MCR) and multivariate clustering methods along with other chemometric methods are proposed to improve the analysis of gas chromatography-mass spectrometry (GC-MS) fingerprints of secondary metabolites in citrus fruits peels. In this way, chromatographic problems such as baseline/background contribution, low S/N peaks, asymmetric peaks, retention time shifts, and co-elution (overlapped and embedded peaks) occurred during GC-MS analysis of chromatographic fingerprints are solved using the proposed strategy. In this study, first, informative GC-MS fingerprints of citrus secondary metabolites are generated and then, whole data sets are segmented to some... 

    Comprehensive two-dimensional gas chromatography (GC×GC) retention time shift correction and modeling using bilinear peak alignment, correlation optimized shifting and multivariate curve resolution

    , Article Chemometrics and Intelligent Laboratory Systems ; Volume 117 , 2012 , Pages 80-91 ; 01697439 (ISSN) Parastar, H ; Jalali Heravi, M ; Tauler, R ; Sharif University of Technology
    Elsevier  2012
    Abstract
    A combination of peak alignment methods and multivariate curve resolution (MCR) is proposed for handling retention time shifts and modeling of comprehensive two-dimensional gas chromatographic (GC × GC) data in the case of univariate detection systems such as in flame ionization detection (FID) or in total ion current mass spectrometry (TIC-MS) detection. A new bilinear peak alignment (BPA) method, based on MCR, is first proposed to correct for progressive within run retention time shifts in GC × GC due to temperature programming effects on second chromatographic dimension. The performance of the proposed peak alignment method is compared to that of the correlation optimized warping (COW)... 

    Comparison of two mathematical models for correlating the organic matter removal efficiency with hydraulic retention time in a hybrid anaerobic baffled reactor treating molasses

    , Article Bioprocess and Biosystems Engineering ; Volume 35, Issue 3 , 2012 , Pages 389-397 ; 16157591 (ISSN) Ghaniyari Benis, S ; Martín, A ; Borja, R ; Martin, M. A ; Hedayat, N ; Sharif University of Technology
    Abstract
    A modelling of the anaerobic digestion process of molasses was conducted in a 70-L multistage anaerobic biofilm reactor or hybrid anaerobic baffled reactor with six compartments at an operating temperature of 26 °C. Five hydraulic retention times (6, 16, 24, 72 and 120 h) were studied at a constant influent COD concentration of 10,000 mg/L. Two different kinetic models (one was based on a dispersion model with first-order kinetics for substrate consumption and the other based on a modification of the Young equation) were evaluated and compared to predict the organic matter removal efficiency or fractional conversion. The first-order kinetic constant obtained with the dispersion model was... 

    Optimisation of dilute-acid pretreatment conditions forenhancement sugar recovery and enzymatic hydrolysis ofwheat straw

    , Article Biosystems Engineering ; Volume 111, Issue 2 , 2012 , Pages 166-174 ; 15375110 (ISSN) Satari Baboukani, B ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    Abstract
    In order to produce bioethanol from agricultural residues such as wheat straw, the decomposition lignocellulosic materials into soluble sugars is necessary. This work focused on the influence of dilute sulphuric acid pretreatment conditions on sugar removal and the enzymatic saccharification of wheat straw. Response surface methodology (RSM) based on rotatable central composite design (RCCD) was used to optimise H 2SO 4-catalysed hydrothermal pretreatment of wheat straw, in respect to acid concentration (0.75-2.25%), treatment time (10-30min) and temperature (120-160°C). The pretreated wheat straw was hydrolysed by a standard blend of Cellusoft CR ®. Enzymatic hydrolysis was also measured to... 

    Resolution and quantification of complex mixtures of polycyclic aromatic hydrocarbons in heavy fuel oil sample by means of GC × GC-TOFMS combined to multivariate curve resolution

    , Article Analytical Chemistry ; Volume 83, Issue 24 , 2011 , Pages 9289-9297 ; 00032700 (ISSN) Parastar, H ; Radović, J. R ; Jalali-Heravi, M ; Diez, S ; Bayona, J. M ; Tauler, R ; Sharif University of Technology
    Abstract
    Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS) combined to multivariate curve resolution-alternating least-squares (MCR-ALS) is proposed for the resolution and quantification of very complex mixtures of compounds such as polycyclic aromatic hydrocarbons (PAHs) in heavy fuel oil (HFO). Different GC × GC-TOFMS data slices acquired during the analysis of HFO samples and PAH standards were simultaneously analyzed using the MCR-ALS method to resolve the pure component elution profiles in the two chromatographic dimensions as well as their pure mass spectra. Outstandingly, retention time shifts within and between GC × GC runs were not affecting... 

    Formaldehyde biodegradation using an immobilized bed aerobic bioreactor with pumice stone as a support

    , Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1372-1376 ; 10263098 (ISSN) Ebrahimi, S ; Borghei, M ; Sharif University of Technology
    Abstract
    The objective of this study is the investigation of formaldehyde degradation in a bioreactor with pumice stone as a support. The reactor was tested at different synthetic wastewater concentrations with total COD of 500, 1000 and 1500 mgL, respectively, at 24 h hydraulic retention time. The effect of feed composition was tested by changing the COD TCOD FA ratio in order to analyze the impact of formaldehyde concentration. The average formaldehyde and COD removal efficiencies obtained in the reactor were 97.1% and 88%, respectively. The maximum COD and formaldehyde removal efficiencies occurred at the COD TCOD F of 41 at COD T=1000mgL. The effect of toxic shock on reactor performance was... 

    On the parameters influencing chemo-physical properties of rice husk ash and its performance in cement mortars

    , Article Proceedings, Annual Conference - Canadian Society for Civil Engineering ; Volume 2 , 2011 , Pages 1248-1255 ; 9781618392183 (ISBN) Gholizadeh, A ; Khaloo, A. R ; Nasir, S ; Sharif University of Technology
    2011
    Abstract
    One of the most conventional and energy efficient methods to improve the engineering properties of concrete is the utilization of waste materials and by-products. Among agricultural wastes, rice husk ash (RHA) has exhibited the greatest potential to enhance the characteristics of cement mixtures. However, the investigations on the properties and performance of RHA are slim compared to its potential advantages and few systematic studies can be found in the literature regarding parameters influencing the chemo-physical and microstructural characteristics of RHA along with its performance in cement mixtures. In this study, the effect of retention time of rice husk is systematically... 

    Upgrading activated sludge systems and reduction in excess sludge

    , Article Bioresource Technology ; Volume 102, Issue 22 , November , 2011 , Pages 10327-10333 ; 09608524 (ISSN) Hazrati, H ; Shayegan, J ; Sharif University of Technology
    2011
    Abstract
    Most of 200 Activated Sludge Plant in Iran are overloaded and as a result, their efficiency is low. In this work, a pilot plant is manufactured and put into operation in one of the wastewater treatment plants in the west of Tehran. Instead of conventional activated sludge, a membrane bioreactor and an upflow anaerobic sludge blanket reactor used as a pretreatment unit in this pilot. For the sake of data accuracy and precision, an enriched municipal wastewater was opted as an influent to the pilot. Based on the attained result, the optimum retention time in this system was 4. h, and the overall COD removal efficiency was 98%. As a whole, the application of this retrofit would increase the... 

    Optimizing OLR and HRT in a UASB reactor for pretreating high- Strength municipal wastewater

    , Article Chemical Engineering Transactions ; Volume 24 , 2011 , Pages 1285-1290 ; 19749791 (ISSN) Hazrati, H ; Shayegan, J ; Sharif University of Technology
    Abstract
    This study was carried out for examination of a lab-scale UASB reactor for optimization of organic loading rate and hydraulic retention time. The total volume of the reactor was 5 1 with an effective height of 160 cm and diameter of 5 cm. This reactor was used to treat fortified municipal wastewater at volumetric organic loadings of 3.6, 7.2, 10.8, and 14.4 kg m3 d 1 at temperature 30°C. The result of present work indicated an optimum range for organic loading (7.2 to 10.8 kg m-3 d-1) with COD removal efficiency of about 85%. Moreover, optimum HRT for influent COD concentration of 1200mg/l is shown to be only 4 hours. Furthermore nitrate removal efficiency was about 80% at optimized organic... 

    Anaerobic digestion of vegetable waste

    , Article Chemical Engineering Transactions ; Volume 24 , 2011 , Pages 1291-1296 ; 19749791 (ISSN) Babaee, A ; Shayegan, J ; Sharif University of Technology
    Italian Association of Chemical Engineering - AIDIC  2011
    Abstract
    Fruit and vegetable wastes are produced in large quantities in Iran, and constitute a source of nuisance in municipal landfills. The objective of this study was to optimize the applications of anaerobic digestion for the treatment of municipal organic wastes. We studied the effect of organic loading rates on anaerobic digestion of vegetable wastes. The complete-mix, pilot-scale digester with working volume of 70 1 was used. The experiments were conducted at 34°C with a fixed hydraulic retention time of 25 days. The digester was operated at different organic feeding rates of 1.4, 2 and 2.75 kg VS/(m3.d). The biogas produced had methane composition of 49.7- 64% and biogas production rates of... 

    Experimental Study the Treatment of Oily Wastewater by Thermophilic External Membrane Bioreactor(MBR)

    , M.Sc. Thesis Sharif University of Technology Geramiraz, Farzaneh (Author) ; Kariminia, Hamidreza (Supervisor) ; Vosoughi, Manouchehr (Supervisor) ; Hesampour, Mehrdad (Co-Advisor)
    Abstract
    The membrane bioreactor (MBR) as an alternative method for simultaneous biodegradation and separation of oily water has received more attention, recently. Normally the MBR works at ambient temperature; therefore, the yield of biodegradation recalcitrant components is low. Increasing temperature improves the efficiency of degradation and reduces the amount of produced sludge. In this study the performance of an aerobic thermophilic and mesophilic membrane bioreactor (MBR) for treating oily wastewater has been investigated. In batch conditions (without applying the membrane), a comparison between COD removal in mesophilic and thermophilic conditions was done. In thermophilic conditions COD and... 

    Performance Evaluation of Membrane Bioreactors in Treating Municipal Wastewater

    , M.Sc. Thesis Sharif University of Technology Hatami Bahman Beyglou, Elnaz (Author) ; Torkian, Ayoub (Supervisor)
    Abstract
    Membrane bioreactors can replace the activated sludge process and the final clarification step in municipal wastewater treatment. The combination of bioreactor and crossflow microfiltration allows for a high chemical oxygen demand (COD) reduction of synthetic wastewater. In this study, experimental data from a laboratory scale membrane bioreactor are presented. In order to investigate the influence of various operating parameters such as hydraulic retention time (HRT), biomass concentration and organic loading rate on organic pollutant removal, the pilot scale submerged membrane bioreactor (SMBR) with a Polyvinylidene Fluoride (PVDF) hollow fiber membrane module was conducted using synthetic... 

    Architecting the last-level cache for GPUs using STT-RAM technology

    , Article Transactions on Design Automation of Electronic Systems ; Volume 20, Issue 4 , 2015 ; 10844309 (ISSN) Samavatian, M. H ; Arjomand, M ; Bashizade, R ; Sarbazi Azad, H ; Sharif University of Technology
    Abstract
    Future GPUs should have larger L2 caches based on the current trends in VLSI technology and GPU architectures toward increase of processing core count. Larger L2 caches inevitably have proportionally larger power consumption. In this article, having investigated the behavior of GPGPU applications, we present an efficient L2 cache architecture for GPUs based on STT-RAM technology. Due to its high-density and low-power characteristics, STT-RAM technology can be utilized in GPUs where numerous cores leave a limited area for on-chip memory banks. They have, however, two important issues, high energy and latency of write operations, that have to be addressed. Low retention time STT-RAMs can... 

    An efficient STT-Ram last level cache architecture for GPUs

    , Article Proceedings - Design Automation Conference ; 2-5 June , 2014 , pp. 1-6 ; ISSN: 0738100X ; ISBN: 9781479930173 Samavatian, M. H ; Abbasitabar, H ; Arjomand, M ; Sarbazi-Azad, H ; Sharif University of Technology
    Abstract
    In this paper, having investigated the behavior of GPGPU applications, we present an effcient L2 cache architecture for GPUs based on STT-RAM technology. With the increase of processing cores count, larger on-chip memories are required. Due to its high density and low power characteristics, STT-RAM technology can be utilized in GPUs where numerous cores leave a limited area for on-chip memory banks. They have however two important issues, high energy and latency of write operations, that have to be addressed. Low data retention time STT-RAMs can reduce the energy and delay of write operations. However, employing STT-RAMs with low retention time in GPUs requires a thorough investigation on... 

    The highest inhibition coefficient of phenol biodegradation using an acclimated mixed culture

    , Article Water Science and Technology ; Volume 73, Issue 5 , 2016 , Pages 1033-1040 ; 02731223 (ISSN) Mohseni, M ; Sharifi Abdar, P. S ; Borghei, S. M ; Sharif University of Technology
    IWA Publishing  2016
    Abstract
    In this study a membrane biological reactor (MBR) was operated at 25±1 °C and pH = 7.5±0.5 to treat synthetic wastewater containing high phenol concentrations. Removal efficiencies of phenol and chemical oxygen demand (COD)were evaluated at four various hydraulic retention times (HRTs) of 24, 12, 8, and 4 hours. The removal rate of phenol (5.51 kg-Phenol kg-VSS-1 d-1), observed at HRT of 4 h,was the highest phenol degradation rate in the literature.According toCODtests, therewere no significant organic matter in the effluent, and phenol was degraded completely by mixed culture. Substrate inhibition was calculated from experimental growth parameters using the Haldane, Yano, and Edward... 

    Study of the MBR System for the Removal of Ethyl Benzene and Styrene from Petrochemical Wastewater and Process Optimization by Reducing Membrane Fouling

    , Ph.D. Dissertation Sharif University of Technology Hazrati, Hossein (Author) ; Shayegan, Jalaloddin (Supervisor)
    Abstract
    In this thesis was investigated the effect of solid retention time (SRT), Hydraulic retention time (HRT), activated carbon and suspended carrier on styrene and ethylbenzene biological removal and also on membrane fouling. In addition to the typical analysis (COD, MLSS, MLVSS, and SVI), the flocculation ability, sludge particle size distribution (PSD), FTIR analysis, excitation-emission matrix (EEM) fluorescence spectroscopy, soluble microbial product (SMP), extracellular polymeric substance (EPS), microscopic observations, microbial activities, microorganism population, and filamentous bacteria are considered to determine sludge characteristics. This study was done in five sections: in the... 

    Investigation and Controlling of Sludge Bulking in Wastewater Treatment Plant with Synthetic Wastewater

    , M.Sc. Thesis Sharif University of Technology Gholami, Mohsen (Author) ; Shayegan, Jalaleddin (Supervisor)
    Abstract
    Biological treatment is an essential part of wastewater treatment. One of the major problems of the biological treatment systems is a solid separation. Filamentous bulking is a type of solid separation problem that settled sludge volume and the turbidity of the effluent will be increase in bulking condition. The presence of excessive Filamentous bacteria causes filamentous bulking. In this thesis, filamentous bulking were studied to understand this phenomena better and tried to control that with the different methods. This research was conducted in laboratory scale Sequencing Batch Reactor (SBR), conventional activated sludge and conventional activated sludge with anaerobic selector with... 

    Simultaneous biological organic matter and nutrient removal in an anaerobic/anoxic/oxic (A2O) moving bed biofilm reactor (MBBR) integrated system

    , Article International Journal of Environmental Science and Technology ; Volume 14, Issue 2 , 2017 , Pages 291-304 ; 17351472 (ISSN) Jaafari, J ; Seyedsalehi, M ; Safari, G. H ; Ebrahimi Arjestan, M ; Barzanouni, H ; Ghadimi, S ; Kamani, H ; Haratipour, P ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2017
    Abstract
    In the present study, the performance of three moving bed biofilm reactors (MBBRs) has been evaluated in series with anaerobic/anoxic/oxic (A2O) units for simultaneous removal of organic matter and nutrients (nitrogen and phosphorous) from a synthetic wastewater with characteristics similar to those of a typical municipal wastewater. Response surface methodology based on central composite design was used to investigate the effects of nitrate recycle ratio, hydraulic retention time (HRT), and influent chemical oxygen demand (COD) on the organic and nutrient removal and optimization process. The optimized values of influent COD, HRT, and R were 462 mg/L, 10 h, and 3.52, respectively. The... 

    Application of moving bed biofilm reactor in the removal of pharmaceutical compounds (diclofenac and ibuprofen)

    , Article Journal of Environmental Chemical Engineering ; Volume 6, Issue 4 , 2018 , Pages 5530-5535 ; 22133437 (ISSN) Fatehifar, M ; Borghei, S. M ; Ekhlasi Nia, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Pharmaceutical waste has attracted significant attention in the past two decades due to the current high consumption of pharmaceuticals together with the development of reliable detection technologies. In order to acquire better understanding on pharmaceuticals removal in biological processes, the treatment of synthetic wastewater containing diclofenac (DFN) and ibuprofen (IBU), two of the most commonly prescribed medicines worldwide, was studied using a moving bed biofilm reactor (MBBR). An 8.5-L aerobic MBBR with Kaldnes packing filling ratio of 40% was designed. The controlled parameters were pH within neutral range, temperature of 37 °C, mixed liquor suspended solids (MLSS) of 2100 mg/L,...