Loading...
Search for: robot-programming
0.007 seconds
Total 32 records

    Path planning of modular robots on various terrains using Q-learning versus optimization algorithms

    , Article Intelligent Service Robotics ; Volume 10, Issue 2 , 2017 , Pages 121-136 ; 18612776 (ISSN) Haghzad Klidbary, S ; Bagheri Shouraki, S ; Sheikhpour Kourabbaslou, S ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Self-reconfigurable modular robots (SRMRs) have recently attracted considerable attention because of their numerous potential applications in the real world. In this paper, we draw a comprehensive comparison among five different algorithms in path planning of a novel SRMR system called ACMoD through an environment comprised of various terrains in a static condition. The contribution of this work is that the reconfiguration ability of ACMoD has been taken into account. This consideration, though raises new algorithmic challenges, equips the robot with new capability to pass difficult terrains rather than bypassing them, and consequently the robot can achieve better performance in terms of... 

    Optimal path-planning for mobile robots to find a hidden target in an unknown environment based on machine learning

    , Article Journal of Ambient Intelligence and Humanized Computing ; 2018 , Pages 1-10 ; 18685137 (ISSN) Sombolestan, M ; Rasooli, A ; Khodaygan, S ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Using mobile robots in disaster areas can reduce risks and the search time in urban search and rescue operations. Optimal path-planning for mobile robotics can play a key role in the reduction of the search time for rescuing victims. In order to minimize the search time, the shortest path to the target should be determined. In this paper, a new integrated Reinforcement Learning—based method is proposed to search and find a hidden target in an unknown environment in the minimum time. The proposed algorithm is developed in two main phases. Depending on whether or not the mobile robot receives the signal from the hidden target, phases I or II of the proposed algorithm can be carried out. Then,... 

    Optimal path-planning for mobile robots to find a hidden target in an unknown environment based on machine learning

    , Article Journal of Ambient Intelligence and Humanized Computing ; Volume 10, Issue 5 , 2019 , Pages 1841-1850 ; 18685137 (ISSN) Sombolestan, S. M ; Rasooli, A ; Khodaygan, S ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Using mobile robots in disaster areas can reduce risks and the search time in urban search and rescue operations. Optimal path-planning for mobile robotics can play a key role in the reduction of the search time for rescuing victims. In order to minimize the search time, the shortest path to the target should be determined. In this paper, a new integrated Reinforcement Learning—based method is proposed to search and find a hidden target in an unknown environment in the minimum time. The proposed algorithm is developed in two main phases. Depending on whether or not the mobile robot receives the signal from the hidden target, phases I or II of the proposed algorithm can be carried out. Then,... 

    Robots’ cooperation for finding a target in streets

    , Article 1st IFIP WG 1.8 International Conference on Topics in Theoretical Computer Science, 26 August 2015 through 28 August 2015 ; Volume 9541 , 2016 , Pages 30-43 ; 03029743 (ISSN) ; 9783319286778 (ISBN) Mehrizi, M. A ; Ghodsi, M ; Tabatabaei, A
    Springer Verlag 
    Abstract
    We study the problem of finding a target t from a start point s in street environments with the cooperation of two robots which have a minimal sensing capability; that is, robots do not know any information about the workspace including information on distances, edges, coordinates, angles etc. They just can detect the discontinuities in the visibility region of their location. The robots can detect target point t as soon as it enters their visibility region and have communication peripherals to send messages to each other. Our aim is to minimize the length of the path passed by the robots. We propose an online algorithm for robots such that they move in the workspace and find the target.... 

    A continuous RRT*-based path planning method for non-holonomic mobile robots using B-spline curves

    , Article Journal of Ambient Intelligence and Humanized Computing ; 2022 ; 18685137 (ISSN) Eshtehardian, S. A ; Khodaygan, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Rapidly exploring random trees (RRT) are sampling-based approaches being widely applied for path planning of mobile robots. Since the output of these algorithms usually is a stream of discrete lines involving discontinuity at the linking points, kinematic constraints restrict the robot's movements. Consequently, robots may not pass discrete points in the path correctly. Hence, the using CAGD (Computer-Aided Geometry Design) curves can run simultaneously alongside those algorithms or may run after that to make a smooth path and that's the way in which non-holonomic constraints can be considered perfect and robots can be droved autonomously across them about the collision detection method... 

    Rigid vs compliant contact: an experimental study on biped walking

    , Article Multibody System Dynamics ; Volume 45, Issue 4 , 2019 , Pages 379-401 ; 13845640 (ISSN) Khadiv, M ; Moosavian, S. A. A ; Yousefi-Koma, A ; Sadedel, M ; Ehsani Seresht, A ; Mansouri, S ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Contact modeling plays a central role in motion planning, simulation and control of legged robots, as legged locomotion is realized through contact. The two prevailing approaches to model the contact consider rigid and compliant premise at interaction ports. Contrary to the dynamics model of legged systems with rigid contact (without impact) which is straightforward to develop, there is no consensus among researchers to employ a standard compliant contact model. Our main goal in this paper is to study the dynamics model structure of bipedal walking systems with rigid contact and a novel compliant contact model, and to present experimental validation of both models. For the model with rigid... 

    Generalized intelligent Water Drops algorithm by fuzzy local search and intersection operators on partitioning graph for path planning problem

    , Article Journal of Intelligent and Fuzzy Systems ; Volume 29, Issue 2 , 2015 , Pages 975-986 ; 10641246 (ISSN) Monfared, H ; Salmanpour, S ; Sharif University of Technology
    IOS Press  2015
    Abstract
    In this paper, a generalized intelligent water drops algorithm (IWD) for solving robot path planning problem is proposed. The authors want to reduce the time of reaching the optimal solution as much as possible. To do this, some new heuristic operators and a multi section graph model of environment is introduced. The authors divide graph to equal sections and compare behaviour of the solutions (paths) in each section with behaviour of them in other sections. This comparison uses a fuzzy inference system. Base on this comparison, a fuzzy number is assigned to each part of solutions. This fuzzy number determines the worth of a solution in a section. Less worth solutions need more improvement.... 

    Construction equipment collision-free path planning using robotic approach

    , Article ISARC 2018 - 35th International Symposium on Automation and Robotics in Construction and International AEC/FM Hackathon: The Future of Building Things, 20 July 2018 through 25 July 2018 ; 2018 Kayhani, N ; Taghaddos, H ; Behzadipour, S ; Arcadis; Autodesk; et al.; Topcon; VHV Versicherungen; ZPP German Engineering ; Sharif University of Technology
    International Association for Automation and Robotics in Construction I.A.A.R.C)  2018
    Abstract
    Path planning is crucial in constructability analysis and heavy construction equipment scheduling, particularly in industrial plants. The main purpose of construction equipment path planning is devising the shortest path between its initial and aimed location. This suggested path is supposed to be safe, and collision-free. The current planning practice, even in industrial projects whose sites are extremely congested, is manual based on the expert judgment. Thus, this sophisticated manual process is not only prone to errors, but also time-consuming. This research presents an automated path planning approach based on an obstacle avoidance technique in robotics to support the decision-making... 

    Optimization of dynamic mobile robot path planning based on evolutionary methods

    , Article 2015 AI and Robotics, IRANOPEN 2015 - 5th Conference on Artificial Intelligence and Robotics, 12 April 2015 ; April , 2015 , Page(s): 1 - 7 ; 9781479987337 (ISBN) Fetanat, M ; Haghzad, S ; Shouraki, S. B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This paper presents evolutionary methods for optimization in dynamic mobile robot path planning. In dynamic mobile path planning, the goal is to find an optimal feasible path from starting point to target point with various obstacles, as well as smoothness and safety in the proposed path. Pattern search (PS) algorithm, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to find an optimal path for mobile robots to reach to target point with obstacle avoidance. For showing the success of the proposed method, first they are applied to two different paths with a dynamic environment in obstacles. The first results show that the PSO algorithms are converged and minimizethe... 

    Online path planning for Surena III humanoid robot using model predictive control scheme

    , Article 4th RSI International Conference on Robotics and Mechatronics, ICRoM 2016, 26 October 2016 through 28 October 2016 ; 2017 , Pages 416-421 ; 9781509032228 (ISBN) Mirjalili, R ; Yousefi Koma, A ; Shirazi, F. A ; Mansouri, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this paper, two online path planning methods are presented for SURENA III humanoid robot by using model predictive control scheme. The methods are general control schemes which can generate the online motions for walking of a humanoid robot. For lowering computational costs a three dimensional linear inverted pendulum model is used instead of the full dynamical model of the robot. The generated trajectories are then used for computing the zero-moment point (ZMP) of the robot and the joint torques. The resulted joint torques of the two methods are compared to torques obtained from Genetic Algorithm (GA) path planning method presented for SURENA III humanoid robot in previous studies. The... 

    Phenomenological tissue fracture modeling for an Endoscopic Sinus and Skull Base Surgery training system based on experimental data

    , Article Medical Engineering and Physics ; Volume 68 , 2019 , Pages 85-93 ; 13504533 (ISSN) Sadeghnejad, S ; Farahmand, F ; Vossoughi, G ; Moradi, H ; Mousa Sadr Hosseini, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The ideal simulator for Endoscopic Sinus and Skull Base Surgery (ESSS)training must be supported by a physical model and provide repetitive behavior in a controlled environment. Development of realistic tissue models is a key part of ESSS virtual reality (VR)-based surgical simulation. Considerable research has been conducted to address haptic or force feedback and propose a phenomenological tissue fracture model for sino-nasal tissue during surgical tool indentation. Mechanical properties of specific sino-nasal regions of the sheep head have been studied in various indentation and relaxation experiments. Tool insertion at different indentation rates into coronal orbital floor (COF)tissue is... 

    Clearing an orthogonal polygon to find the evaders

    , Article Theoretical Computer Science ; Volume 847 , December , 2020 , Pages 175-184 Mahdavi, S. S ; Ghodsi, M ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    In a multi-robot system, a number of autonomous robots would sense, communicate, and decide to move within a given domain to achieve a common goal. In the pursuit-evasion problem, a polygonal region is given and a robot called a pursuer tries to find some mobile targets called evaders. The goal of this problem is to design a motion strategy for the pursuer such that it can detect all the evaders. In this paper, we consider a new variant of the pursuit-evasion problem in which the robots (pursuers) each moves back and forth along an orthogonal line segment inside a simple orthogonal polygon P. We assume that P includes unpredictable, moving evaders that have bounded speed. We propose the... 

    Heavy mobile crane lift path planning in congested modular industrial plants using a robotics approach

    , Article Automation in Construction ; Volume 122 , 2021 ; 09265805 (ISSN) Kayhani, N ; Taghaddos, H ; Mousaei, A ; Behzadipour, S ; Hermann, U ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Lift path planning is a significant subtask in constructability analysis, sequencing, and scheduling of congested industrial modular projects, impacting project cost, and safety. Although intuitive lift planning is still prevalent among the practitioners, this manual process might be tedious and error-prone for hundreds of lifts. This research presents an automated lift path planning method for heavy crawler cranes in no-walk scenarios employing a robotics approach. This method treats the lifted object as a three-degree-of-freedom convex mobile robot with discretized rotational and continuous translational motions. The proposed resolution-complete method models the crane capacity chart,... 

    A new motion planning method for discretely actuated hyper-redundant manipulators

    , Article Robotica ; February , 2015 ; 02635747 (ISSN) Motahari, A ; Zohoor, H ; Habibnejad Korayem, M ; Sharif University of Technology
    Cambridge University Press  2015
    Abstract
    A hyper-redundant manipulator is made by mounting the serial and/or parallel mechanisms on top of each other as modules. In discrete actuation, the actuation amounts are a limited number of certain values. It is not feasible to solve the kinematic analysis problems of discretely actuated hyper-redundant manipulators (DAHMs) by using the common methods, which are used for continuous actuated manipulators. In this paper, a new method is proposed to solve the trajectory tracking problem in a static prescribed obstacle field. To date, this problem has not been considered in the literature. The removing first collision (RFC) method, which is originally proposed for solving the inverse kinematic... 

    Optimization of kinematic redundancy and workspace analysis of a dual-arm cam-lock robot

    , Article Robotica ; Volume 34, Issue 1 , 2016 , Pages 23-42 ; 02635747 (ISSN) Rezaeian Jouybari, B ; Ghaemi Osgouie, K ; Meghdari, A ; Sharif University of Technology
    Cambridge University Press  2016
    Abstract
    In this paper, the problem of obtaining the optimal trajectory of a Dual-Arm Cam-Lock (DACL) robot is addressed. The DACL robot is a reconfigurable manipulator consisting of two cooperative arms, which may act separately. These may also be cam-locked in each other in some links and thus lose some degrees of freedom while gaining higher structural stiffness. This will also decrease their workspace volume. It is aimed to obtain the optimal configuration of the robot and the optimal joint trajectories to minimize the consumed energy for following a specific task space path. The Pontryagin's Minimum Principle is utilized with a shooting method to resolve kinematic redundancy. Numerical examples... 

    Optimal gait planning for humanoids with 3D structure walking on slippery surfaces

    , Article Robotica ; Volume 35, Issue 3 , 2017 , Pages 569-587 ; 02635747 (ISSN) Khadiv, M ; Moosavian, S. A. A ; Yousefi Koma, A ; Sadedel, M ; Mansouri, S ; Sharif University of Technology
    Cambridge University Press  2017
    Abstract
    In this study, a gait optimization routine is developed to generate walking patterns which demand the lowest friction forces for implementation. The aim of this research is to fully address the question which walking pattern demands the lowest coefficient of friction amongst all feasible patterns?. To this end, first, the kinematic structure of the considered 31 DOF (Degrees of Freedom) humanoid robot is investigated and a closed-form dynamics model for its lower-body is developed. Then, the medium through which the walking pattern generation is conducted is presented. In this medium, after designing trajectories for the feet and the pelvis, the joint space variables are obtained, using the... 

    A new motion planning method for discretely actuated hyper-redundant manipulators

    , Article Robotica ; Volume 35, Issue 1 , 2017 , Pages 101-118 ; 02635747 (ISSN) Motahari, A ; Zohoor, H ; Habibnejad Korayem, M ; Sharif University of Technology
    Cambridge University Press  2017
    Abstract
    A hyper-redundant manipulator is made by mounting the serial and/or parallel mechanisms on top of each other as modules. In discrete actuation, the actuation amounts are a limited number of certain values. It is not feasible to solve the kinematic analysis problems of discretely actuated hyper-redundant manipulators (DAHMs) by using the common methods, which are used for continuous actuated manipulators. In this paper, a new method is proposed to solve the trajectory tracking problem in a static prescribed obstacle field. To date, this problem has not been considered in the literature. The removing first collision (RFC) method, which is originally proposed for solving the inverse kinematic... 

    Minimizing movement

    , Article 18th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, 7 January 2007 through 9 January 2007 ; Volume 07-09-January-2007 , 2007 , Pages 258-267 ; 9780898716245 (ISBN) Demaine, E. D ; Hajiaghayi, M ; Mahini, H ; Sayedi Roshkhar, A. S ; Oveisgharan, S ; Zadimoghaddam, M ; Sharif University of Technology
    Association for Computing Machinery  2007
    Abstract
    We give approximation algorithms and inapproximability results for a class of movement problems. In general, these problems involve planning the coordinated motion of a large collection of objects (representing anything from a robot swarm or firefighter team to map labels or network messages) to achieve a global property of the network while minimizing the maximum or average movement. In particular, we consider the goals of achieving connectivity (undirected and directed), achieving connectivity between a given pair of vertices, achieving independence (a dispersion problem), and achieving a perfect matching (with applications to multicasting). This general family of movement problems... 

    Minimum control effort trajectory planning and tracking of the CEDRA brachiation robot

    , Article Robotica ; Volume 31, Issue 7 , 2013 , Pages 1119-1129 ; 02635747 (ISSN) Meghdari, A ; Lavasani, S. M. H ; Norouzi, M ; Mousavi, M. S. R ; Sharif University of Technology
    2013
    Abstract
    The control of a brachiation robot has been the primary objective of this study. A brachiating robot is a type of a mobile arm that is capable of moving from branch to branch similar to a long-armed ape. In this paper, to minimize the actuator work, Pontryagin's minimum principle was used to obtain the optimal trajectories for two different problems. The first problem considers brachiation between fixed branches with different distance and height, whereas the second problem deals with the brachiating and catching of a moving target branch. Theoretical results show that the control effort in the proposed method is reduced by 25% in comparison with the target dynamics method which was proposed... 

    Optimal trajectory planning for brachiation robot on ladder with irregular branches

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011 ; Volume 6, Issue PARTS A AND B , August , 2011 , Pages 1131-1137 ; 9780791854839 (ISBN) Meghdari, A ; Lavasani, S. M. H ; Mousavi, M. S. R ; Norouzi, M ; Sharif University of Technology
    2011
    Abstract
    This paper deals with control of the brachiation robot. The brachiation is a type of mobile robot that moves from branch to branch like a long-armed ape. Here, as a new innovation, Pontryagin's minimum principle is used to obtain the optimal trajectories for two different problems. The first problem is "Brachiation between fixed branches with different distance and height" and the second is "Brachiating and catching the moving target branch". Theoretical results show that the control effort in the proposed method is reduced by 25% in comparison with the "Target Dynamics" method which was proposed in prior articles for this robot. The obtained optimal trajectory also minimizes the brachiation...