Loading...
Search for: robotic-self-diagnosis
0.005 seconds

    Failure detection and isolation in robotic manipulators using joint torque sensors

    , Article Robotica ; Volume 28, Issue 4 , 2010 , Pages 549-561 ; 02635747 (ISSN) Namvar, M ; Aghili, F ; Sharif University of Technology
    2010
    Abstract
    Reliability of any model-based failure detection and isolation (FDI) method depends on the amount of uncertainty in a system model. Recently, it has been shown that the use of joint torque sensing results in a simplified manipulator model that excludes hardly identifiable link dynamics and other nonlinearities such as friction, backlash, and flexibilities. In this paper, we show that the application of the simplified model in a fault detection algorithm increases reliability of fault monitoring system against modeling uncertainty. The proposed FDI filter is based on a smooth velocity observer of degree 2n where n stands for the number of manipulator joints. No velocity measurement and... 

    Robust detection and isolation of failures in satellite attitude sensors and gyro

    , Article Robotica ; Volume 30, Issue 7 , 2012 , Pages 1157-1166 ; 02635747 (ISSN) Ahmadi, B ; Namvar, M ; Sharif University of Technology
    2012
    Abstract
    Summary Reliability of a satellite attitude control system depends on accurate detection of failures in its sensors. This paper presents an observer for robust detection and isolation of a class of failures in satellite attitude sensors. The proposed observer uses measurement of a three-axis gyro together with only one attitude sensor, and generates a residual signal which is sensitive to faults and is simultaneously robust against disturbance and noise. A nonlinear model of satellite kinematics is considered for design of the observer. The structure of the observer is in the form of a delayed continuous-time differential equation ensuring its robustness properties. A realistic simulation is...