Loading...
Search for: robotic-systems
0.006 seconds
Total 45 records

    Passive dynamic object manipulation: preliminary definition and examples

    , Article Acta Automatica Sinica ; Volume 36, Issue 12, December 2010, Pages 1711–1719 Beigzadeh, B ; Meghdari, A. (Ali) ; Sohrabpour, S ; Sharif University of Technology
    Abstract
    In this work, we introduce a category of dynamic manipulation processes, namely passive dynamic object manipulation, according to which an object is manipulated passively. Specifically, we study passive dynamic manipulation here. We define the main concept, discuss the challenges, and talk about the future directions. Like other passive robotic systems, there are no actuators in these systems. The object follows a path and travels along it under the effect of its own weight, as well as the interaction force applied by each manipulator on it. We select some simple examples to show the concept. For each example, dynamic equations of motion are derived and the stability of the process is taken... 

    Swarm aggregation using emotional learning based intelligent controller

    , Article 2009 6th International Symposium on Mechatronics and its Applications ; 2009 , Article number 5164827 ; ISBN: 9781424434817 Etemadi, S ; Vatankhah, R ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    Abstract
    In this paper, we consider a control strategy of multi-robot systems, or simply, swarms, based on emotional control technique. First, we briefly discuss a "kinematic" swarm model in n-dimensional space introduced in an earlier paper. In that model, motion of every swarm member is governed by predefined inter-individual interactions. Limitations of every member's field of view are also considered in that model. After that, we consider a general model for vehicle dynamics of each swarm member, and use emotional control theory to force their motion to obey the dynamics of the kinematic model. Based on the kinematic model, stability (cohesion) analysis is performed and coordination controller.is... 

    Optimization of kinematic redundancy and workspace analysis of a dual-arm cam-lock robot

    , Article Robotica ; 2014 ; ISSN: 02635747 Jouybari, B. R ; Osgouie, K. G ; Meghdari, A ; Sharif University of Technology
    Abstract
    In this paper, the problem of obtaining the optimal trajectory of a Dual-Arm Cam-Lock (DACL) robot is addressed. The DACL robot is a reconfigurable manipulator consisting of two cooperative arms, which may act separately. These may also be cam-locked in each other in some links and thus lose some degrees of freedom while gaining higher structural stiffness. This will also decrease their workspace volume. It is aimed to obtain the optimal configuration of the robot and the optimal joint trajectories to minimize the consumed energy for following a specific task space path. The Pontryagin's Minimum Principle is utilized with a shooting method to resolve kinematic redundancy. Numerical examples... 

    Adaptive impedance control of UAVs interacting with environment using a robot manipulator

    , Article 2014 2nd RSI/ISM International Conference on Robotics and Mechatronics, ICRoM 2014 ; Oct , 2014 , p. 636-641 Sayyaadi, H ; Sharifi, M ; Sharif University of Technology
    Abstract
    In this paper, a nonlinear adaptive impedance controller is proposed for UAVs equipped with a robot manipulator that interacts with environment. In this adaptive controller, by considering the nonlinear dynamics model of the UAV plus the robot manipulator in Cartesian coordinates, all of model parameters are considered to be completely uncertain and their estimation is updated using an adaptation law. The objective of the proposed adaptive controller is the control of manipulator's end-effector impedance in Cartesian coordinates to have a stable physical interaction. The adjustable Cartesian impedance is a desired dynamical relationship between the end-effector motion in Cartesian... 

    Use of PSO in parameter estimation of robot dynamics; part one: No need for parameterization

    , Article 2012 16th International Conference on System Theory, Control and Computing, ICSTCC 2012 - Joint Conference Proceedings ; 2012 ; 9786068348483 (ISBN) Jahandideh, H ; Namvar, M ; Sharif University of Technology
    2012
    Abstract
    Offline procedures for estimating parameters of robot dynamics are practically based on the parameterized inverse dynamic model. In this paper, we present a novel approach to parameter estimation of robot dynamics which removes the necessity of parameterization (i.e. finding the minimum number of parameters from which the dynamics can be calculated through a linear model with respect to these parameters). This offline approach is based on a simple and powerful swarm intelligence tool: the particle swarm optimization (PSO). In this paper, we discuss and validate the method through simulated experiments. In "Part Two" we analyze our method in terms of robustness and compare it to robust... 

    Design of a force-reflective master robot for haptic telesurgery applications: RoboMaster1

    , Article Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ; 2011 , Pages 7037-7040 ; 1557170X (ISSN) ; 9781424441211 (ISBN) Hadavand, M ; Mirbagheri, A ; Salarieh, H ; Farahmand, F ; Sharif University of Technology
    Abstract
    With the increasing trend toward Minimally Invasive Surgery (MIS) procedures, the need to develop new robotic systems to facilitate such surgeries is more and more recognized. This paper describes the design and development of a 4 DOF force-reflective master robot (RoboMaster1) for haptic telesurgery applications. A two-double parallelogram robot is introduced including a novel mechanism at the base for producing and control of the end effector's linear motion. This eliminates the deficiencies caused due to suspending massive actuators at the end effector or cabling from the base. The kinematics and work space of the system were analyzed and a prototype was developed for primary practical... 

    Design and development of an effective low-cost robotic cameraman for laparoscopic surgery: RoboLens

    , Article Scientia Iranica ; Volume 18, Issue 1 B , 2011 , Pages 59-71 ; 10263098 (ISSN) Mirbagheri, A ; Farahmand, F ; Meghdari, A ; Karimian, F ; Sharif University of Technology
    2011
    Abstract
    A robotic system was designed and developed to perform the camera handling task during laparoscopic surgery. The system employs an effective low cost mechanism, with a minimum number of actuated DOFs, enabling spherical movement around a remote centre of motion positioned at the the insertion point of the laparoscopic stem. Kinematic analysis showed a high manipulability measure for the system, with the left/right movements directly governed by rotation of the first rotary actuator, and zoom and up/down movements by the simultaneous motions of the linear and second rotary actuators. A prototype of the robot was developed for practical use in an operating room environment. Hands-free operator... 

    Adaptive characterisation of a human hand model during intercations with a telemanipulation system

    , Article International Conference on Robotics and Mechatronics, ICROM 2015, 7 October 2015 through 9 October 2015 ; 2015 , Pages 688-693 ; 9781467372343 (ISBN) Esfandiari, M ; Sadeghnejad, S ; Farahmand, F ; Vosoughi, G ; Sharif University of Technology
    2015
    Abstract
    Proper modeling of the human arm dynamic, as it interacts with telemanipulation and haptic systems, is important in enhancing the transparency of these systems. In this article, we introduced an adaptive identifier to estimate the impedance characteristic of a human operator as it interacts with a single translational degree of freedom mechanism. The five parameter model, including an extra spring and damper for a better approximation of the dynamic behavior of human arm, has been used. Since the impedance characteristic of human arm differs from one individual to another, it is important to estimate these parameters for each individual and update the controller to enhance the transparency... 

    A modular extreme learning machine with linguistic interpreter and accelerated chaotic distributor for evaluating the safety of robot maneuvers in laparoscopic surgery

    , Article Neurocomputing ; Volume 151, Issue P2 , March , 2015 , Pages 913-932 ; 09252312 (ISSN) Mozaffari, A ; Behzadipour, S ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this investigation, a systematic sequential intelligent system is proposed to provide the surgeon with an estimation of the state of the tool-tissue interaction force in laparoscopic surgery. To train the proposed intelligent system, a 3D model of an in vivo porcine liver was built for different probing tasks. To capture the required knowledge, three different geometric features, i.e. Y displacement of the nodes on the upper surface and slopes on the closest node to the deforming area of the upper edge in both X-. Y and Z-. Y planes, were extracted experimentally. The numerical simulations are conducted in three independent successive stages. At the first step, a well-known... 

    Nonlinear robust adaptive Cartesian impedance control of UAVs equipped with a robot manipulator

    , Article Advanced Robotics ; Volume 29, Issue 3 , Feb , 2015 , Pages 171-186 ; 01691864 (ISSN) Sharifi, M ; Sayyaadi, H ; Sharif University of Technology
    Robotics Society of Japan  2015
    Abstract
    In this paper, a new nonlinear robust adaptive impedance controller is addressed for Unmanned Aerial Vehicles (UAVs) equipped with a robot manipulator that physically interacts with environment. A UAV equipped with a robot manipulator is a novel system that can perform different tasks instead of human being in dangerous and/or inaccessible environments. The objective of the proposed robust adaptive controller is control of the UAV and its robotic manipulators end-effector impedance in Cartesian space in order to have a stable physical interaction with environment. The proposed controller is robust against parametric uncertainties in the nonlinear dynamics model of the UAV and the robot... 

    Passive dynamic object manipulation: preliminary definition and examples

    , Article Zidonghua Xuebao/Acta Automatica Sinica ; Volume 36, Issue 12 , 2010 , Pages 1711-1719 ; 02544156 (ISSN) Beigzadeh, B ; Meghdari, A ; Sohrabpour, S ; Sharif University of Technology
    2010
    Abstract
    In this work, we introduce a category of dynamic manipulation processes, namely passive dynamic object manipulation, according to which an object is manipulated passively. Specifically, we study passive dynamic manipulation here. We define the main concept, discuss the challenges, and talk about the future directions. Like other passive robotic systems, there are no actuators in these systems. The object follows a path and travels along it under the effect of its own weight, as well as the interaction force applied by each manipulator on it. We select some simple examples to show the concept. For each example, dynamic equations of motion are derived and the stability of the process is taken... 

    Design optimization of gimbal robotic joints based on task space manipulability

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 3 , July , 2010 , Pages 567-572 ; 9780791849170 (ISBN) Mohammadi, F ; Hemmatian, I ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    Featuring a nonlinear novel design, Gimbal transmission, is a replacement for traditional robotic joints like gearboxes and revolute joints. This mechanism is one of the most recent types of nonlinear direct transmission (DT) methods in robots. As an alternative for traditional drive methodologies - herein called direct drive transmission (DD) methods, DT provides dynamic coupling and joint interaction attenuation while its capability to be adjusted for a desired task space point, smooth input-output characteristic, and varying reduction ratio lead to a desired force and motion behavior for the whole manipulator. In this paper, design optimization of a gimbal mechanism used as a replacement... 

    Deployment of multi-agent robotic systems in presence of obstacles

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 5 , 2010 , Pages 7-12 ; 9780791849194 (ISBN) Soltani, A ; Sayyaadi, H ; Sharif University of Technology
    2010
    Abstract
    The deployment of multi-agent systems in presence of obstacle deals with autonomous motion of agents toward a specified target by sensing each other and boundaries of obstacles. In this paper, asynchronous, scalable, distributed algorithm is used to deploy agents. Boundaries of obstacles are modeled by virtual agents. Algorithm was implemented by solving continuous n-median problem called generalized Fermat-Weber problem. It is shown that deployment is performed when position of real agents are the geometric median of their Voronoi cells. Simulation results show the validity of the proposed algorithm very well  

    Hardware in the loop simulation and analysis of a model of fish robotic system

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 5 , 2010 , Pages 203-210 ; 9780791849194 (ISBN) Zeinoddini Meymand, S ; Vosoughi, G. R ; Farshchi, M ; Nemati, A ; Sharif University of Technology
    2010
    Abstract
    In the present study, an adaptive sliding mode control method was employed to control a fish robotic system using hardware in the loop methodology. Up to now, few researches have focused on autonomous control of fish robot in dynamic environments which may be the result of difficulties in modeling of hydrodynamic effects on fish robot. Therefore, following the introduction of the nonlinear model for the robot, elongated body theory, suggested by Lighthill, was used to analyze fish movements. Then, kinematics control to track desired trajectories was designed for under-actuated model of robot. Adaptive sliding mode controller, capable of adapting according to changes and uncertainties, was... 

    Mechanical Systems Using Nonlinear State Feedback

    , M.Sc. Thesis Sharif University of Technology Zade Gharejehdaghi, Elahe (Author) ; Namvar, Mehrzad (Supervisor)
    Abstract
    Disturbance is one of the inseparable components of the mechanical systems which cannot be avoided. In these systems a number of inner and outer sources exist which are the cause of disturbance. Abrupt changes in torque, uncertainty in parameters, mechanical impulses and external forces on robot’s parts all can be mentioned as examples which introduce disturbance that affects the output of mechanical and robotic systems. Therefore, disturbance rejection is considered indispensable in robotic control systems. There are number of problems which are associated with disturbance rejection. In several methods, mostly optimization based methods, system fails to completely reject the disturbance and... 

    Adaptive control of robot manipulators including actuator dynamics and without joint torque measurement

    , Article 2010 IEEE International Conference on Robotics and Automation, ICRA 2010, Anchorage, AK, 3 May 2010 through 7 May 2010 ; 2010 , Pages 4639-4644 ; 10504729 (ISSN) ; 9781424450381 (ISBN) Salimi Khaligh, Y ; Namvar, M ; Sharif University of Technology
    2010
    Abstract
    Ignoring actuator dynamics in control of rigid manipulators can in practice result in performance degradation or loss of system stability. However, consideration of actuator dynamics usually requires measurement of robot joint torques. This paper addresses motion tracking control of an n-DOF rigid robot by taking into account its actuator dynamics. Joint torque measurement is avoided by using an adaptive observer. The backstepping technique is adopted to develop a dynamically smooth adaptive nonlinear controller dealing with uncertainties in manipulator and actuator dynamics. Semi-global convergence of motion tracking errors as well as torque estimation error are proven without any... 

    Motion tracking in robotic manipulators in presence of delay in measurements

    , Article Proceedings - IEEE International Conference on Robotics and Automation, 3 May 2010 through 7 May 2010, Anchorage, AK ; 2010 , Pages 3884-3889 ; 10504729 (ISSN) ; 9781424450381 (ISBN) Bahrami, S ; Namvar, M ; Sharif University of Technology
    2010
    Abstract
    Time-delay in sensor measurements can be a frequent cause of instability and performance degradation in a robotic system. In this paper, motion tracking of rigid manipulators in presence of constant and known delay in sensors is investigated. By using non-minimal model of a manipulator, a dynamically smooth controller based on the Linear Matrix Inequality (LMI) approach is proposed which guarantees asymptotic tracking of desired joint angles and velocities in presence of delayed measurements. For a given controller the maximum amount of delay that preserves system stability is computed by solving an LMI optimization and also by numerical simulations, and the results are compared. Finally, a... 

    Failure detection and isolation in robotic manipulators using joint torque sensors

    , Article Robotica ; Volume 28, Issue 4 , 2010 , Pages 549-561 ; 02635747 (ISSN) Namvar, M ; Aghili, F ; Sharif University of Technology
    2010
    Abstract
    Reliability of any model-based failure detection and isolation (FDI) method depends on the amount of uncertainty in a system model. Recently, it has been shown that the use of joint torque sensing results in a simplified manipulator model that excludes hardly identifiable link dynamics and other nonlinearities such as friction, backlash, and flexibilities. In this paper, we show that the application of the simplified model in a fault detection algorithm increases reliability of fault monitoring system against modeling uncertainty. The proposed FDI filter is based on a smooth velocity observer of degree 2n where n stands for the number of manipulator joints. No velocity measurement and... 

    Fast estimation of space-robots inertia parameters: A modular mathematical formulation

    , Article Acta Astronautica ; Volume 127 , 2016 , Pages 283-295 ; 00945765 (ISSN) Nabavi Chashmi, S. Y ; Malaek, S. M. B ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    This work aims to propose a new technique that considerably helps enhance time and precision needed to identify "Inertia Parameters (IPs)" of a typical Autonomous Space-Robot (ASR). Operations might include, capturing an unknown Target Space-Object (TSO), "active space-debris removal" or "automated in-orbit assemblies". In these operations generating precise successive commands are essential to the success of the mission. We show how a generalized, repeatable estimation-process could play an effective role to manage the operation. With the help of the well-known Force-Based approach, a new "modular formulation" has been developed to simultaneously identify IPs of an ASR while it captures a... 

    Optimization of kinematic redundancy and workspace analysis of a dual-arm cam-lock robot

    , Article Robotica ; Volume 34, Issue 1 , 2016 , Pages 23-42 ; 02635747 (ISSN) Rezaeian Jouybari, B ; Ghaemi Osgouie, K ; Meghdari, A ; Sharif University of Technology
    Cambridge University Press  2016
    Abstract
    In this paper, the problem of obtaining the optimal trajectory of a Dual-Arm Cam-Lock (DACL) robot is addressed. The DACL robot is a reconfigurable manipulator consisting of two cooperative arms, which may act separately. These may also be cam-locked in each other in some links and thus lose some degrees of freedom while gaining higher structural stiffness. This will also decrease their workspace volume. It is aimed to obtain the optimal configuration of the robot and the optimal joint trajectories to minimize the consumed energy for following a specific task space path. The Pontryagin's Minimum Principle is utilized with a shooting method to resolve kinematic redundancy. Numerical examples...