Loading...
Search for: robust-control
0.013 seconds
Total 298 records

    Performance enhancement of an uncertain nonlinear medical robot with optimal nonlinear robust controller

    , Article Computers in Biology and Medicine ; Volume 146 , 2022 ; 00104825 (ISSN) Azizi, S ; Soleimani, R ; Ahmadi, M ; Malekan, A ; Abualigah, L ; Dashtiahangar, F ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    So the design and control of an accurate robot for this purpose is very critical for saving the patients. Modification of the model and designing two optimized nonlinear robust controllers for the first time for the parallel manipulator medical robot and cardiopulmonary resuscitation. The main objective of the current study in order to decrease the overshoot and increase the accuracy of the position and convergence speed and robustness to destructive factors affecting the precision of the robot. In this paper firstly, the kinematics and dynamics analysis of a translational parallel manipulator robot is presented and a non-linear model in the presence of uncertainties, disturbances, and... 

    Robust output regulation: optimization-based synthesis and event-triggered implementation

    , Article IEEE Transactions on Automatic Control ; Volume 67, Issue 7 , 2022 , Pages 3529-3536 ; 00189286 (ISSN) Sarafraz, M. S ; Proskurnikov, A. V ; Tavazoei, M. S ; Esfahani, P. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this article, we investigate the problem of practical output regulation, i.e., to design a controller that brings the system output in the vicinity of a desired target value while keeping the other variables bounded. We consider uncertain systems that are possibly nonlinear and the uncertainty of their linear parts is modeled element wise through a parametric family of matrix boxes. An optimization-based design procedure is proposed that delivers a continuous-time control and estimates the maximal regulation error. We also analyze an event-triggered emulation of this controller, which can be implemented on a digital platform, along with an explicit estimate of the regulation error. ©... 

    Robust D-stabilization analysis of fractional-order control systems with complex and linearly dependent coefficients

    , Article IEEE Transactions on Systems, Man, and Cybernetics: Systems ; Volume 52, Issue 3 , 2022 , Pages 1823-1837 ; 21682216 (ISSN) Mohsenipour, R ; Fathi Jegarkandi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This article focuses on the robust D-stabilization analysis of fractional-order control systems where each of the system and the controller may be of fractional order. The coefficients of the system are considered as complex linear functions of interval uncertain parameters, so this article deals with fractional-order polytopic systems. First, a necessary and sufficient condition is introduced for the robust D-stabilization of the closed-loop control system based on the zero exclusion condition and the value set concept. Then, the geometric pattern of the value set of the characteristic polynomial is obtained analytically using the exposed vertices. Second, a function is presented to check... 

    Variable speed wind turbine power control: A comparison between multiple MPPT based methods

    , Article International Journal of Dynamics and Control ; Volume 10, Issue 2 , 2022 , Pages 654-667 ; 2195268X (ISSN) Nouriani, A ; Moradi, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Reducing the renewable energy costs is necessary for the competition with the fossil energies and control strategies have great impact on the efficiency of wind machines. In the wind turbine industry, a practical approach is to maximize the energy capture of a wind machine by optimizing the power coefficient in the under-rated situations. In this paper, with the main objective of maximizing the energy capture in the second region, four different control strategies are compared in the presence of uncertainties. The proposed control methods are compared based on their power capture and robustness against probable uncertainties in the structural and environmental parameters. A two-mass... 

    Uncertainty cost of stochastic producers: metrics and impacts on power grid flexibility

    , Article IEEE Transactions on Engineering Management ; Volume 69, Issue 3 , 2022 , Pages 708-719 ; 00189391 (ISSN) Pourahmadi, F ; Hosseini, S. H ; Dehghanian, P ; Shittu, E ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    The widespread presence of contingent generation, when coupled with the resulting volatility of the chronological net-load (i.e., the difference between stochastic generation and uncertain load) in today's modern electricity markets, engender the significant operational risks of an uncertain sufficiency of flexible energy capacity. In this article, we address several operational flexibility concerns that originate from the increase in generation variability captured within a security-constrained unit commitment (SCUC) formulation in smart grids. To quantitatively assess the power grid operational flexibility capacity, we first introduce two reference operation strategies based on a two-stage... 

    Multi model robust control design for a floating offshore variable speed wind turbine with tension leg platform

    , Article Ocean Engineering ; Volume 266 , 2022 ; 00298018 (ISSN) Ghorbani Shektaei, S. R ; Sadati, N ; Member, IEEE ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper presents a multi-model robust control (MMRC) design for an offshore variable speed wind turbine with tension leg platform. The proposed control scheme covers the model uncertainty in the above rated wind speed, and it provides a reliable control for power regulation while minimizing the mechanical loads on the wind turbine structure. For this purpose, the above rated wind speed region is divided into several wind speed groups, and a set of linearized models are obtained from the Fatigue, Aerodynamics, Structures, and Turbulence (FAST) simulator for various mean wind speeds of each group. Using Weibull wind speed distribution, a nominal model with additive uncertainty is generated... 

    Uncertain multiagent systems with distributed constrained optimization missions and event-triggered communications: application to resource allocation

    , Article IEEE Systems Journal ; 2022 , Pages 1-12 ; 19328184 (ISSN) Sarafraz, M. S ; Tavazoei, M. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This article deals with solving distributed optimization problems with equality constraints by a class of uncertain nonlinear heterogeneous dynamic multiagent systems. It is assumed that each agent with an uncertain dynamic model has limited information about the main problem and limited access to the information of the state variables of the other agents. A distributed algorithm that guarantees cooperatively solving of the constrained optimization problem by the agents is proposed. Via applying this algorithm, the agents do not need to continuously broadcast their data. It is shown that the proposed algorithm can be useful in solving resource allocation problems. IEEE  

    Prediction-Based control for mitigation of axial-torsional vibrations in a distributed drill-string system

    , Article IEEE Transactions on Control Systems Technology ; Volume 30, Issue 1 , 2022 , Pages 277-293 ; 10636536 (ISSN) Tashakori, S ; Vossoughi, G ; Zohoor, H ; Van De Wouw, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This article proposes a control strategy to stabilize the axial-torsional dynamics of a distributed drill-string system. An infinite-dimensional model for the vibrational dynamics of the drill string is used as a basis for controller design. In this article, both the cutting process and frictional contact effects are considered in the bit-rock interaction model. Moreover, models for the top-side boundary conditions regarding axial and torsional actuation are considered. The resulting model is formulated in terms of neutral-type delay differential equations that involve constant state delays, state-dependent state delays, and constant input delays arising from the distributed nature of the... 

    Reducing conservatism in robust stability analysis of fractional-order-polytopic systems

    , Article ISA Transactions ; Volume 119 , 2022 , Pages 106-117 ; 00190578 (ISSN) Abolpour, R ; Dehghani, M ; Tavazoei, M. S ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2022
    Abstract
    This paper studies the robust stability of the fractional-order (FO) LTI systems with polytopic uncertainty. Generally, the characteristic polynomial of the system dynamic matrix is not an affine function of the uncertain parameters. Consequently, the robust stability of the uncertain system cannot be evaluated by well-known approaches including LMIs or exposed edges theorem. Here, an over-parameterization technique is developed to convert the main characteristic polynomial into a set of local over-parameterized characteristic polynomials (LOPCPs). It is proved that the robust stability of LOPCPs implies the robust stability of the uncertain system. Then, an algorithm is proposed to explore... 

    Wind-tolerant optimal closed loop controller design for a domestic atmospheric research airship

    , Article Mechanics Based Design of Structures and Machines ; Volume 50, Issue 6 , 2022 , Pages 2046-2066 ; 15397734 (ISSN) Amani, S ; Pourtakdoust, S. H ; Pazooki, F ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Airships are inherently sensitive to random atmospheric disturbances that could potentially make their data gathering and observation missions a formidable task. In this context robust closed loop feedback controllers are important. The present study is therefore focused on optimal feedback controller design of an indigenous domestically designed airship (DA) for added robustness against atmospheric disturbances. While the general airship six degrees of freedom (6DoF) governing equations of motion are mathematically nonlinear, one often needs to resort to local linearization methods to benefit from proven linear closed loop controller (CLC) design approaches. In this sense an optimal linear... 

    Multi-objective economic-statistical design of simple linear profiles using a combination of NSGA-II, RSM, and TOPSIS

    , Article Communications in Statistics: Simulation and Computation ; Volume 51, Issue 4 , 2022 , Pages 1704-1720 ; 03610918 (ISSN) Roshanbin, N ; Ershadi, M. J ; Niaki, S. T. A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    A multi-objective economic-statistical design is aimed in this article for simple linear profiles. In this design, the interval between two successive sampling intervals, the sample size and the number of adjustment points alongside, the parameters of the monitoring scheme are determined such that not only the implementation cost is minimized, but also the profile exhibits desired statistical performances. To this aim, three objective functions are considered in the multi-objective optimization model of the problem. The Lorenzen–Vance cost function is used to model the implementation cost as the first objective function to be minimized. The second objective function maximizes the in-control... 

    A framework for prescribed-time control design via time-scale transformation

    , Article IEEE Control Systems Letters ; Volume 6 , 2022 , Pages 1976-1981 ; 24751456 (ISSN) Shakouri, A ; Assadian, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This letter presents a unified framework for the design of prescribed-time controllers under time-varying input and state constraints for normal-form unknown nonlinear systems with uncertain input gain. The proposed approach is based on a time-domain mapping method by which any infinite-time system can be corresponded to a prescribed-time system and vice versa. It is shown that the design of a constrained nonasymptotic prescribed-time controller can be reduced to the asymptotic control design for an associated constrained infinite-time system. Faà di Bruno's formula and Bell polynomials are used for a constructive representation of the associated infinite-time system. The presented results... 

    An economic-statistical design of simple linear profiles with multiple assignable causes using a combination of MOPSO and RSM

    , Article Soft Computing ; Volume 25, Issue 16 , 2021 , Pages 11087-11100 ; 14327643 (ISSN) Ershadi, M. J ; Ershadi, M. M ; Haghighi Naeini, S ; Akhavan Niaki, S. T ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    An economic-statistical design with multiple assignable causes following exponential distribution is presented in this paper for linear profiles. For this purpose, a tri-objective optimization model is proposed to minimize the cost with desired statistical performances. Average Run Length (ARL) as the primary statistical measure is employed for the appraisal of the designed linear profiles. The first objective to be minimized is a cost function that models the implementation cost in different states. The second objective is to maximize ARL or the in-control average run-length of the monitoring scheme. The third objective to be minimized is ARL 1 or the out-of-control average run-length of... 

    Control performance enhancement of gas turbines in the minimum command selection strategy

    , Article ISA Transactions ; Volume 112 , 2021 , Pages 186-198 ; 00190578 (ISSN) Eslami, M ; Banazadeh, A ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2021
    Abstract
    Three novel methods, named α, ζ and ϵ, are suggested in this paper to recover the performance loss during switching in the gas turbine control systems. The Minimum Command Selection (MCS) in the gas turbine control systems prompts this performance loss. Any step towards more productivity with less aging factors have a great impact on the gas turbine's lifetime profit and vice versa. Although many hardware upgrades have been studied and applied to accomplish this, in many cases a low-risk manipulation in the software may yield equivalent achievement. State of the art gas turbine control systems are supposed to handle various forms of disturbances, several operation modes and relatively high... 

    Enlarging the region of stability in robust model predictive controller based on dual-mode control

    , Article Transactions of the Institute of Measurement and Control ; Volume 43, Issue 14 , 2021 , Pages 3085-3092 ; 01423312 (ISSN) Khani, F ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Industrial processes are inherently nonlinear with input, state, and output constraints. A proper control system should handle these challenging control problems over a large operating region. The robust model predictive controller (RMPC) could be an linear matrix inequality (LMI)-based method that estimates stability region of the closed-loop system as an ellipsoid. This presentation, however, restricts confident application of the controller on systems with large operating regions. In this paper, a dual-mode control strategy is employed to enlarge the stability region in first place and then, trajectory reversing method (TRM) is employed to approximate the stability region more accurately.... 

    Design of robust control strategy in drug and virus scheduling in nonlinear process of chemovirotherapy

    , Article Computers and Chemical Engineering ; Volume 150 , 2021 ; 00981354 (ISSN) Mobaraki, M ; Moradi, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Since the injection of the oncolytic viruses in the virotherapy process reduces the toxicity and drug resistance inherent in the chemotherapy; chemovirotherapy as a novel combination therapy has become an efficient cancer treatment. The primary purpose of this paper is to design a robust optimal control strategy for the chemovirotherapy through which the tumor density decreases to its stable condition with limited drug and virus delivery. This desired treatment should be responsive in the presence of input disturbances and parametric uncertainties. In this regard, an ODE (Ordinary Differential Equation) mathematical model of the chemovirotherapy process presenting the connection between the... 

    Variable speed wind turbine power control: A comparison between multiple MPPT based methods

    , Article International Journal of Dynamics and Control ; 2021 ; 2195268X (ISSN) Nouriani, A ; Moradi, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Reducing the renewable energy costs is necessary for the competition with the fossil energies and control strategies have great impact on the efficiency of wind machines. In the wind turbine industry, a practical approach is to maximize the energy capture of a wind machine by optimizing the power coefficient in the under-rated situations. In this paper, with the main objective of maximizing the energy capture in the second region, four different control strategies are compared in the presence of uncertainties. The proposed control methods are compared based on their power capture and robustness against probable uncertainties in the structural and environmental parameters. A two-mass... 

    A framework for prescribed-time control design via time-scale transformation

    , Article IEEE Control Systems Letters ; 2021 ; 24751456 (ISSN) Shakouri, A ; Assadian, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    This letter presents a unified framework for the design of prescribed-time controllers under time-varying input and state constraints for normal-form unknown nonlinear systems with uncertain input gain. The proposed approach is based on a time-domain mapping method by which any infinite-time system can be corresponded to a prescribed-time system and vice versa. It is shown that the design of a constrained nonasymptotic prescribed-time controller can be reduced to the asymptotic control design for an associated constrained infinite-time system. Faà di Bruno’s formula and Bell polynomials are used for a constructive representation of the associated infinite-time system. The presented results... 

    A systematic decomposition approach of nonlinear systems by combining gap metric and stability margin

    , Article Transactions of the Institute of Measurement and Control ; Volume 43, Issue 9 , 2021 , Pages 2006-2017 ; 01423312 (ISSN) Ahmadi, M ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    In this paper, in order to control a nonlinear dynamic system via multi-model controller, we propose a systematic approach to determine the nominal local linear models. These models are selected from the local models bank and results in a reduced nominal models set that provides enough information to design a multi-model controller. To determine the initial local models bank, gap metric is used so that the distance between two successive local models is smaller than a threshold value. Then, a systematic approach that aims to get a reduced nominal models bank is developed. Based on this approach, first, a binary gap matrix is defined by combining gap metric and stability information. Then,... 

    A systematic decomposition approach of nonlinear systems by combining gap metric and stability margin

    , Article Transactions of the Institute of Measurement and Control ; Volume 43, Issue 9 , 2021 , Pages 2006-2017 ; 01423312 (ISSN) Ahmadi, M ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    In this paper, in order to control a nonlinear dynamic system via multi-model controller, we propose a systematic approach to determine the nominal local linear models. These models are selected from the local models bank and results in a reduced nominal models set that provides enough information to design a multi-model controller. To determine the initial local models bank, gap metric is used so that the distance between two successive local models is smaller than a threshold value. Then, a systematic approach that aims to get a reduced nominal models bank is developed. Based on this approach, first, a binary gap matrix is defined by combining gap metric and stability information. Then,...