Loading...
Search for: robust-tracking
0.011 seconds

    Particle Filter and its Application in Tracking

    , M.Sc. Thesis Sharif University of Technology Amidzadeh, Mohsen (Author) ; Babaiezadeh, Massoud (Supervisor)
    Abstract
    The aim of tracking is localization and positioning of position-variant object through consecutive times. The essence of this object determines the application of tracking. For example this object can be the satellite, mobile, certain object in sequential movie or etc. The particle filter as an estimation filter is a method that provides us the solution of tracking Problem. Therefore this thesis is devoted to particle filter and its application in tracking. But tracking problem needs some prior information; one of them is access to measurements relating to object position. In situations that the measurement equation which is related to object position has ambiguity we need another mechanism... 

    Minimum control effort trajectory planning and tracking of the CEDRA brachiation robot [electronic resource]

    , Article Robotica ; Robotica / Volume 31 / Issue 07 / October 2013, pp 1119-1129 Meghdari, A. (Ali) ; Lavasan, S. M. H ; Norouz, M ; Rahimi Mousavi, M. S ; Sharif University of Technology
    Abstract
    The control of a brachiation robot has been the primary objective of this study. A brachiating robot is a type of a mobile arm that is capable of moving from branch to branch similar to a long-armed ape. In this paper, to minimize the actuator work, Pontryagin's minimum principle was used to obtain the optimal trajectories for two different problems. The first problem considers “brachiation between fixed branches with different distance and height,” whereas the second problem deals with the “brachiating and catching of a moving target branch”. Theoretical results show that the control effort in the proposed method is reduced by 25% in comparison with the “target dynamics” method which was... 

    Minimum control effort trajectory planning and tracking of the CEDRA brachiation robot

    , Article Robotica ; Volume 31, Issue 7 , 2013 , Pages 1119-1129 ; 02635747 (ISSN) Meghdari, A ; Lavasani, S. M. H ; Norouzi, M ; Mousavi, M. S. R ; Sharif University of Technology
    2013
    Abstract
    The control of a brachiation robot has been the primary objective of this study. A brachiating robot is a type of a mobile arm that is capable of moving from branch to branch similar to a long-armed ape. In this paper, to minimize the actuator work, Pontryagin's minimum principle was used to obtain the optimal trajectories for two different problems. The first problem considers brachiation between fixed branches with different distance and height, whereas the second problem deals with the brachiating and catching of a moving target branch. Theoretical results show that the control effort in the proposed method is reduced by 25% in comparison with the target dynamics method which was proposed... 

    Multivariable control strategy for autonomous operation of a converter-based distributed generation system

    , Article 2011 IEEE/PES Power Systems Conference and Exposition, PSCE 2011, 20 March 2011 through 23 March 2011, Phoenix, AZ ; March , 2011 , Page(s): 1 - 8 ; 9781612847870 (ISBN) Nejati, A ; Nobakhti, A ; Karimi, H ; Sharif University of Technology
    2011
    Abstract
    This paper presents a control strategy for the autonomous (islanded) operation of a distributed generation (DG) unit. The DG unit supplies a balanced load through a voitage-sourced converter (VSC). To maintain the autonomous operation in the islanded mode, the DG unit should provide its dedicated load with a sinusoidal voltage with a constant magnitude and a constant frequency. The dynamic model of the islanded DG system is represented by a set of nonlinear equations. Since the objective is to regulate voltage and frequency of the islanded DG about their rated values, the nonlinear model is linearized about the operating point. The obtained linearized model represents a multivariable LTI...