Loading...
Search for: sadighi-bonabi--r
0.011 seconds
Total 88 records

    Investigating the possibility of Sonofusion in Deuterated acetone

    , Article International Journal of Hydrogen Energy ; Vol. 39, issue. 21 , July , 2014 , pp. 11328-11335 ; ISSN: 03603199 Zoghi-Foumani, N ; Sadighi-Bonabi, R ; Sharif University of Technology
    Abstract
    In this article, energetic implosion of a single vapor bubble induced by a standing acoustic wave is theoretically studied and the Sonoluminescing bubble parameters involved in Sonofusion in Deuterated acetone (C3D 6O) are investigated. Parameters such as radius, wall velocity, interior temperature and pressure of the bubble influenced by various driving pressure amplitudes in Deuterated acetone at ∼0 °C are investigated. Based on the obtained results, the possibility of thermonuclear fusion inside imploding cavitation bubbles is discussed. The interior pressure of C 3D6O vapor bubbles at the collapse time is extremely high and the increase of the pressure amplitude increases the pressure... 

    Electron trajectory evaluation in laser-plasma interaction for effective output beam

    , Article Chinese Physics B ; Volume 19, Issue 6 , 2010 ; 16741056 (ISSN) Zobdeh, P ; Sadighi Bonabi, R ; Afarideh, H ; Sharif University of Technology
    2010
    Abstract
    Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and... 

    Cavity generation and quasi-monoenergetic electron generation in laser-plasma interaction

    , Article Physics of Particles and Nuclei Letters ; Volume 6, Issue 5 , 2009 , Pages 413-416 ; 15474771 (ISSN) Zobdeh, P ; Sadighi Bonabi, R ; Afarideh, H ; Sharif University of Technology
    2009
    Abstract
    Electrons cavity acceleration is one the relativistic regime to describe the monoenergetic electron acceleration. In this work, we introduce a new ellipsoid model that could be improved the quality of the electron beam in contrast to other methods such as that using periodic plasma wake field, spherical cavity regime and plasma channel guided acceleration. The trajectory of the electron motion can be described as hyperbola, parabola or ellipsoid path. It is influenced by the position and energy of the electrons and the electrostatic potential of the cavity. We have noticed that the electron output energy is not affected by the elongation of the transverse cavity radius in the ellipsoid... 

    Using the steepened plasma profile and wave breaking threshold in laser-plasma interaction

    , Article Contributions to Plasma Physics ; Volume 48, Issue 8 , 2008 , Pages 555-560 ; 08631042 (ISSN) Zobdeh, P ; Sadighi Bonabi, R ; Afarideh, H ; Yazdani, E ; Rezaei Nasirabad, R ; Sharif University of Technology
    2008
    Abstract
    In this work we evaluate the interaction of high intense laser beam with a steepened density profile. During laser interaction with underdense plasma by freely expanding plasma regime, modification of density profile is possible. In this paper we have investigated the ultra short laser pulse interaction with nonisothermal and collisionless plasma. We consider self-focusing as an effective nonlinear phenomenon that tends to increase when the laser power is more than critical rate. By leading the expanded plasma to a preferred location near to critical density, laser reflection is obtained, so the density profile will be locally steepened. The electromagnetic fields are evaluated in this new... 

    New ellipsoid cavity model for high-intensity laser-plasma interaction

    , Article Plasma Devices and Operations ; Volume 16, Issue 2 , 2008 , Pages 105-114 ; 10519998 (ISSN) Zobdeh, P ; Sadighi Bonabi, R ; Afarideh, H ; Sharif University of Technology
    2008
    Abstract
    In this work we present an ellipsoid cavity regime for the production of a bunch of quasi-monoenergetic electrons. The electron output beam is more effective than the periodic plasma wave method or the plasma-channel-guided method. A hyperbola, parabola or ellipsoid path is described for the electron trajectory motion in this model. A dense bunch of relativistic electrons with a quasi-monoenergetic spectrum is self-generated here. The obtained results show a smaller width for the electron energy spectrum in comparison with the previous results. We found that there are optimum conditions to form the ellipsoid cavity. Laser beam properties (such as the spot size, power and pulse duration) and... 

    An analytical model of plasma cavity for producing of quasi-monoenergetic electron in intense laser-plasma interaction

    , Article 34th European Physical Society Conference on Plasma Physics 2007, EPS 2007, Warsaw, 2 July 2007 through 6 July 2007 ; Volume 31, Issue 3 , 2007 , Pages 1773-1776 ; 9781622763344 (ISBN) Zobdeh, P ; Sadighi Bonabi, R ; Afarideh, H ; Sharif University of Technology
    2007
    Abstract
    During the recent experiments and PIC simulations, quasi-monoenergetic for electron is observed [1, 2]. Forming the free of cold plasma electrons cavity behind the laser pulse is possible instead of periodic plasma wave and plasma channel guided method [3]. In this bubble cavity a dense bunch of relativistic electrons with a monoenergetic spectrum is self-generated [3].The profiles [3] and PIC simulation [4] show the ellipsoid shape cavity behind the laser pulse. In this work we present an analytical ellipsoid model and discuss how quasi-monoenergetic electron is produced in the bubble field  

    Dissociation of C-H molecular bond of methane by pulse shaped ultra-intense laser field

    , Article Chemical Physics Letters ; Volume 560 , 2013 , Pages 60-65 ; 00092614 (ISSN) Zare, S ; Irani, E ; Navid, H. A ; Dehghani, Z ; Anvari, A ; Sadighi Bonabi, R ; Sharif University of Technology
    2013
    Abstract
    The effects of laser field and laser pulse width on the dissociation probability of C-H bond of CH4 have been investigated. Calculation of time dependent Schrödinger equation by grid spectral method is carried out and it is produced optimistic results in comparison to the earlier Quasi-classical calculations. The results show that there is an excellent match with experimental data. In this work, a number of results in the emerging field of laser with intensity of I = 8 × 1013 W cm-2 and pulse duration of 100 fs are presented. The present modulated field leads to more than 20% improvement in the dissociation probability  

    Relativistic self-focusing of intense laser beam in thermal collisionless quantum plasma with ramped density profile

    , Article Physical Review Special Topics - Accelerators and Beams ; Volume 18, Issue 4 , April , 2015 ; 10984402 (ISSN) Zare, S ; Yazdani, E ; Rezaee, S ; Anvari, A ; Sadighi Bonabi, R ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    Propagation of a Gaussian x-ray laser beam has been analyzed in collisionless thermal quantum plasma with considering a ramped density profile. In this density profile due to the increase in the plasma density, an earlier and stronger self-focusing effect is noticed where the beam width oscillates with higher frequency and less amplitude. Moreover, the effect of the density profile slope and the initial plasma density on the laser propagation has been studied. It is found that, by increasing the initial density and the ramp slope, the laser beam focuses faster with less oscillation amplitude, smaller laser spot size and more oscillations. Furthermore, a comparison is made among the laser... 

    The effect of quantum correction on plasma electron heating in ultraviolet laser interaction

    , Article Journal of Applied Physics ; Volume 117, Issue 14 , April , 2015 ; 00218979 (ISSN) Zare, S ; Yazdani, E ; Sadighi Bonabi, R ; Anvari, A ; Hora, H ; Sharif University of Technology
    American Institute of Physics Inc  2015
    Abstract
    The interaction of the sub-picosecond UV laser in sub-relativistic intensities with deuterium is investigated. At high plasma temperatures, based on the quantum correction in the collision frequency, the electron heating and the ion block generation in plasma are studied. It is found that due to the quantum correction, the electron heating increases considerably and the electron temperature uniformly reaches up to the maximum value of 4.91-×-107-K. Considering the quantum correction, the electron temperature at the laser initial coupling stage is improved more than 66.55% of the amount achieved in the classical model. As a consequence, by the modified collision frequency, the ion block is... 

    Relativistic Gaussian laser beam self-focusing in collisional quantum plasmas

    , Article Laser and Particle Beams ; Volume 33, Issue 3 , 2015 , Pages 397-403 ; 02630346 (ISSN) Zare, S ; Rezaee, S ; Yazdani, E ; Anvari, A ; Sadighi Bonabi, R ; Sharif University of Technology
    Cambridge University Press  2015
    Abstract
    Propagation of Gaussian X-ray laser beam is presented in collisional quantum plasma and the beam width oscillation is studied along the propagation direction. It is noticed that due to energy absorption in collisional plasma, the laser energy drops to an amount less than the critical value of the self-focusing effect and consequently, the laser beam defocuses. It is found that the oscillation amplitude of the laser spot size enhances while passing through collisional plasma. For the greater values of collision frequency, the beam width oscillates with higher amplitude and defocuses in a shallower plasma depth. Also, it is realized that in a dense plasma environment, the laser self-focusing... 

    Dependency of barrier height and ideality factor on identically produced small Au/p-Si Schottky barrier diodes

    , Article Physica B: Condensed Matter ; Volume 405, Issue 16 , 2010 , Pages 3253-3258 ; 09214526 (ISSN) Yeganeh, M. A ; Rahmatollahpur, S ; Sadighi-Bonabi, R ; Mamedov, R ; Sharif University of Technology
    2010
    Abstract
    Small high-quality Au/p-Si Schottky barrier diodes (SBDs) with extremely low reverse leakage current using wet lithography were produced. Their effective barrier heights (BHs) and ideality factors from currentvoltage (IV) characteristics were measured by a conducting probe atomic force microscope (C-AFM). In spite of identical preparation of the diodes there was a diode-to-diode variation in ideality factor and barrier height parameters. By extrapolating the plots the built-in potential of the Au/p-Si contact was obtained as Vbi=0.5425 V and the barrier height value (ΦB(C-V)) was calculated to be ΦB(C-V)=0.7145 V for Au/p-Si for a typical 100 μm diode diameters. In the present work the... 

    Electron heating enhancement by frequency-chirped laser pulses

    , Article Journal of Applied Physics ; Vol. 116, issue. 10 , 2014 Yazdani, E ; Sadighi-Bonabi, R ; Afarideh, H ; Riazi, Z ; Hora, H ; Sharif University of Technology
    Abstract
    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2.... 

    Enhanced laser ion acceleration with a multi-layer foam target assembly

    , Article Laser and Particle Beams ; Vol. 32, issue. 4 , 2014 , pp. 509-515 ; ISSN: 02630346 Yazdani, E ; Sadighi-Bonabi, R ; Afarideh, H ; Yazdanpanah, J ; Hora, H ; Sharif University of Technology
    Abstract
    Interaction of a linearly polarized Gaussian laser pulse (at relativistic intensity of 2.0 × 1020 Wcm-2) with a multi-layer foam (as a near critical density target) attached to a solid layer is investigated by using two-dimensional particle-in-cell simulation. It is found that electrons with longitudinal momentum exceeding the free electrons limit of m e ca 0 2/2 so-called super-hot electrons can be produced when the direct laser acceleration regime is fulfilled and benefited from self-focusing inside of the subcritical plasma. These electrons penetrate easily through the target and can enhance greatly the sheath field at the rear, resulting in a significant increase in the maximum energy of... 

    Layers from initial Rayleigh density profiles by directed nonlinear force driven plasma blocks for alternative fast ignition

    , Article Laser and Particle Beams ; Volume 27, Issue 1 , 2009 , Pages 149-156 ; 02630346 (ISSN) Yazdani, E ; Cang, Y ; Sadighi Bonabi, R ; Hora, H ; Osman, F ; Sharif University of Technology
    2009
    Abstract
    Measurement of extremely new phenomena during the interaction of laser pulses with terawatt and higher power and picoseconds with plasmas arrived at drastically different anomalies in contrast to the usual observations if the laser pulses were very clean with a contrast ratio higher than 108. This was guaranteed by the suppression of prepulses during less than dozens of ps before the arrival of the main pulse resulting in the suppression of relativistic self-focusing. This anomaly was confirmed in many experimental details, and explained and numerically reproduced as a nonlinear force acceleration of skin layers generating quasi-neutral plasma blocks with ion current densities above 1011... 

    Laser-driven proton acceleration enhancement by the optimized intense short laser pulse shape

    , Article Physics of Plasmas ; Volume 24, Issue 5 , 2017 ; 1070664X (ISSN) Souri, S ; Amrollahi, R ; Sadighi Bonabi, R ; Sharif University of Technology
    Abstract
    Interactions of two distinct shapes of the pulses namely positive/negative chirped pulse and fast/slow rising-edge pulse with plasma are studied using particle-in-cell simulation. It is found that, for a pulse duration of 34 fs and intensity a0 = 12, proton acceleration could be enhanced by asymmetric pulses with either pulse envelope or pulse frequency modification. The number of accelerated protons, as well as the proton energy cut-off, is increased by asymmetric pulses. In this work, for positive chirped pulse, electrostatic field at the rear side of the target is improved by about 30%, which in turns leads to an increase in the proton energy cut-off more than 40%. Moreover, in contrary... 

    Hot electron generation enhancement by long duration positive chirped laser pulses

    , Article Physica Scripta ; Volume 93, Issue 10 , 2018 ; 00318949 (ISSN) Souri, S ; Sadighi Bonabi, R ; Sharif University of Technology
    Abstract
    Interaction of the chirped circularly polarized laser pulse with ramped density plasma is presented by particle-in-cell simulation. The obtained results indicate that the laser penetration depth into the plasma target and hot-electron generation can be improved by chirped induced transparency (CIT). Positive chirped pulses penetrate more deeply in the plasma leading to the hot electron enhancement and improvement of the maximum separation accelerating fields at the rear side of the target. For laser pulse with 150 fs time duration, there is 40% increase in the laser penetration depth in the target and the maximum amount of the electrostatic field is improved by a factor of 5 in the present... 

    Improvement of laser-driven proton beam quality by optimized intense chirped laser pulses

    , Article Physics of Plasmas ; Volume 25, Issue 1 , 2018 ; 1070664X (ISSN) Souri, S ; Amrollahi, R ; Sadighi Bonabi, R ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    The effect of pulse shaping on the intense laser-driven proton beam produced through radiation pressure acceleration as a highly efficient mechanism is investigated. In this regard, the interaction of pulses with modified frequencies, including positive and negative chirped pulses with plasma, is simulated using particle-in-cell code. The simulation results indicate that the proton acceleration could be significantly enhanced for both negative and positive chirped pulses. As a consequence of the acceleration time extension as well as the electron heating suppression, a sharper and narrower proton beam could be achieved for negative chirped pulses. The same trend is observed for all negative... 

    A rational design of multimodal asymmetric nanoshells as efficient tunable absorbers within the biological optical window

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Souri, S ; Hadilou, N ; Navid, H. A ; Sadighi Bonabi, R ; Anvari, A ; Sharif University of Technology
    Nature Research  2021
    Abstract
    In this work, the optical properties of asymmetric nanoshells with different geometries are comprehensively investigated in the quasi-static regime by applying the dipolar model and effective medium theory. The plasmonic behaviors of these nanostructures are explained by the plasmon hybridization model. Asymmetric hybrid nanoshells, composed of off-center core or nanorod core surrounded by a spherical metallic shell layer possess highly geometrically tunable optical resonances in the near-infrared regime. The plasmon modes of this nanostructures arise from the hybridization of the cavity and solid plasmon modes at the inner and outer surfaces of the shell. The results reveal that the... 

    The effects of circularly polarized laser pulse on generated electron nano-bunches in oscillating mirror model

    , Article Laser and Particle Beams ; Vol. 32, Issue. 2 , June , 2014 , pp. 285-293 ; ISSN: 02630346 Shirozhan, M ; Moshkelgosha, M ; Sadighi Bonabi, R ; Sharif University of Technology
    Abstract
    The effects of the polarized incident laser pulse on the electrons of the plasma surface and on the reflected pulse in the relativistic laser-plasma interaction is investigated. Based on the relativistic oscillating mirror and totally reflecting oscillating mirror (TROM) regimes, the interaction of the intense polarized laser pulses with over-dense plasma is considered. Based on the effect of ponderomotive force on the characteristic of generated electron nano-bunches, considerable increasing in the localization and charges of nano-bunches are realized. It is found that the circularly polarized laser pulse have N e/N cr of 1500 which is almost two and seven times more than the amounts for... 

    Lasing without population inversion in an Er 3+-doped YAG crystal

    , Article Journal of Modern Optics ; Volume 59, Issue 5 , Nov , 2012 , Pages 446-454 ; 09500340 (ISSN) Sahrai, M ; Asadpour, S. H ; Eslami Majd, A ; Sadighi Bonabi, R ; Sharif University of Technology
    2012
    Abstract
    Two atomic models are proposed for an Er 3+-doped YAG crystal with application to lasing with and without population inversion. It is shown how an incoherent pumping field and coherent control coupling field can produce a laser in the presence and absence of population inversion