Loading...
Search for: sayyadi--hassan
0.008 seconds
Total 38 records

    Kinematics and Dynamic Analysis of a Compliant Parallel Mechanism with Flexible Links for Micro Applications

    , M.Sc. Thesis Sharif University of Technology Yaghoubi, Reza (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    In this research dynamic modeling of a 3-DOF (degree of freedom) compliant parallel mechanism with flexible intermediate links has been investigated. Unlike conventional rigid mechanisms that gain their mobility from movable joints, the compliant mechanisms transmit or transform through elastic deformation of flexible members (flexible connector and joint), displacement, force, or energy from input into output. Eliminating clearance, friction, wear and demand of lubrication in compliant mechanisms, and having monolithic structure provides high-precision motion with micro/nanometer level resolution for them. Therefore compliant mechanisms play a significant role in modern technologies such as... 

    Harvesting Energy from Magnetic Shape Memory Alloys in Plannar Loading

    , M.Sc. Thesis Sharif University of Technology Karamian Manesh, Mohammad Javad (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    Harvesting energy by magnetic shape memory alloy has many advantages against other various methods which harvested from environmental vibrations and has been considered due to high long longevity, large strain amplitude and good performance in low frequencies. These materials can display up to % recoverable strain in response to the application of a magnetic field or compressive mechanical stress. Microstructure of these materials changes under applying mechanical loading and/or magnetic field which cause magnetic vector rotating in magnetic domain. Change in magnetization of these materials, lead to harvesting energy by considering Faraday's law of induction. The model of this... 

    The Application of Machine Vision to Identify the Images Underwater

    , M.Sc. Thesis Sharif University of Technology Kaboli, Ali (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    Independent robots are equipped with various sound, inertia and visual sensors for decision making. Vision is an attractive sensor due to its non-invasive nature, passivity, and high information content. In natural environments, visual noises such as snow, rain, and dust distort images. in underwater environments, factors such as refraction and absorption of light suspended particles in the water, and color distortion affects the quality of visual data, resulting in noisy and distorted images. As a result, the autonomous underwater vehicles that rely on vision (AUVs) are challenged, resulting in poor performance. To improve the input to the visual algorithm for tracking the pipeline, in... 

    Control of Car-Like Multi Robots for Doing Group Maneuver and Change Formation

    , M.Sc. Thesis Sharif University of Technology Pourmohammadi, Mohammad (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    In recent years formation control of autonomous vehicles has been a well-studied topic, and the attention has shifted from the control of a single mobile robot to the control of multiple mobile robots because of the advantages a team of robots offer, such as increased efficiency, robustness against fault and damaging, and more systematic approaches to tasks like search and rescue operations, automated highways, survey and patrols, military missions, moving large objects and moving a large number of objects. Formation control means the problem of controlling the relative position and orientation of the mobile robots in a group according to some desired pattern for executing a given task. In... 

    Modeling of Strain-Magneticcharacteristic of Magnetic Shape Memory Alloy in Energy Harvester

    , M.Sc. Thesis Sharif University of Technology Pakdin, Mahdi (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    Harvesting energy from renewable sources in nature, such as wind energy, solar energy, water energy and vibrations has always attracted researchers. There exist different ways to harvest energy from environmental vibrations. In this thesis, energy harvesting via Magnetic Shape Memory Alloys (MSMAs) has been taken into account due to important advantages of these alloys, such as their long fatigue life and good performance at high amplitudes and low frequencies.In this system, applying strain on alloy changes the magnetization and this change generates voltage in the pick-up coil around the MSMA. On the other hand, since the strain-magnetization relation is nonlinear and hysteresis,... 

    Maneuver Modeling and Nonlinear Analysis of a High Speed Ship Considering Thrusting and Propulsive Systems

    , M.Sc. Thesis Sharif University of Technology Miraki Baseri, Rahim (Author) ; Sayyadi, Hassan (Supervisor) ; Mehdigholi, Hamid (Co-Advisor)
    Abstract
    Ship maneuverability is so important from different aspects. According to the regulations of International Maritime Organization (IMO), every vessel has to meet the minimum requirements of mentioned rules. Consequently, prediction of ship maneuverability in early stages of the ship design has become to one of the most necessary steps for shipbuilding and design companies. In this research work maneuvering of a high speed ship has been investigated using three different propulsive modes, considering propeller and rudder systems, azipod propeller and waterjet systems. First of all, hydrodynamics equations of each cases while considering different motion modes such as surge, sway, yaw, and roll... 

    Modeling and Dynamic Analysis of a Laboratary Prototyped Rotary MR Damper using a Prosthetic Knee

    , Ph.D. Dissertation Sharif University of Technology Mousavi, Hamid (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    Regaining biomechanical function, comfort and quality of every-day life is a prime consideration when designing prosthetic devices for amputees. The magnetorheological (MR) prosthetic knee, which is the subject of this study, is an example of such a device. The study presents a comprehensive and a combined MR device design and MR fluid design approach, aiming to advance the MR prosthetic knee. First, this study focuses on developing a new configuration on magnetorheological (MR) brake damper as prosthetic knee. The new configuration is a rotary damper using MR fluid with a single rotary disc will act as a brake while MR fluid is activated by magnetic field in different walking gait. The main... 

    Dynamic Modeling and Torsional Vibration Analysis of Crankshafts Equipped with DMF & CPVA

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Sobhan (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    Torque variations caused by intermittent combustion and inertia effects of reciprocating components, exert significant torsional excitation on crankshaft of internal combustion engines. These excitation induces considerable torsional vibration on crankshafts. Therefore, modeling and analysis of crankshaft torsional vibration and absorber systems, especially in automobiles engine that crankshaft tolerate high amplitude excitations coupled with heavy inertia effects has high importance. In this study, ability of centrifugal pendulum vibration absorber and dual mass flywheel which used in rotating machinery for vibration reduction, will be examined. At first, cranktrain will be torsionaly... 

    Three Dimensional Modeling of Energy Harvester System using Magnetic Shape Memory Alloys

    , M.Sc. Thesis Sharif University of Technology Mehrabi, Mohammad Mahdi (Author) ; Sayyadi, Hassan (Supervisor) ; Hoviat Talab, Maryam (Supervisor)
    Abstract
    Magnetic shape memory alloys (MSMAs) are a new kind of smart materials which are great alternatives for energy harvesting systems due to some unmatched characteristics such as reversible large strain, high cycle fatigue and fast time response. In this work, an energy harvesting system using MSMA is studied. For this goal, a 3-D thermodynamic-based MSMA model is applied for predicting magnetomechanical behavior of the MSMA sample which is used in the energy harvester system. Since demagnetization effect, which has a great influence on the model’s outputs, has been neglected in the selected MSMA model, a new approach is presented for inserting demagnetization coefficients, regarding to the... 

    Control Strategies of Swarm Vessels for Circling Mission in Calm Water

    , M.Sc. Thesis Sharif University of Technology Ghasemzade Ahrami, Abbas (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    Control of a group of autonomous surface vessels with realistic dynamic for circling mission is distributed with the aid of Lyaponov and graph theory. in this brief, to obtain a cooperative controller, new coordination transfer are presented and graph theory is used to illustrate the communication between the agents. With the aid of Lyaponov theory and graph application, Decentralized and scalable controllers are designed for group of autonomous vessels to converge to desired geometry to circling a specific target. Because of the realistic dynamics, Non-Holonmic dynamics and turning constrains of the vessels are considered in the design process. The advantage of proposed controller is: it... 

    Hydrodynamic Modeling of an AUV

    , M.Sc. Thesis Sharif University of Technology Fesanghari, Majid (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    Autonomous underwater vehicles (AUVs) are a type of marine vehicles which are currently being used for exploration, maintenance, repairing of marine structures and military appliances. Unmanned underwater vehicles categorize in two types: ROVs and AUVs, ROVs (remotely operated vehicles) usually are connected to the mother vessel with a cable, conduction signals transfer through this cable and there is an operator in the control loop. The vehicle may be fed up with this cable, AUVs are modern underwater vehicles which the operator on controlling and conducting is removed, there is no connection between the vehicle and mother vessel, energy sources and controlling orders are set up in the... 

    Optimal Trajectory Correction for Hazardous Near-Earth Asteroids

    , M.Sc. Thesis Sharif University of Technology Farsi, Salman (Author) ; Zohoor, Hassan (Supervisor) ; Sayyadi, Hassan (Supervisor)
    Abstract
    The collision of moderately large asteroids and comets also referred to as Near-Earth Objects (NEO's) with earth would have catastrophic consequences. Such events have occurred in the past and may occur again in the future. However, for the first time in known history, humanity may have the technology required to counter this threat. Methods studied for mitigation of this hazard are based on deflecting asteroid's trajectory and are normally divided into two basic categories: high energy impulsive methods, and long-duration low-thrust methods. Two parts of mission to be optimized are the trajectory of spacecraft to reach the target and the deflection strategy which could be analyzed by the... 

    Configuration Design of Mechanical Structure Coupled with MSMA in Energy Harvesting

    , M.Sc. Thesis Sharif University of Technology Effatpanah Hesari, Mojtaba (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    In recent years, energy harvesting from ambient sources in order to use for low-powered electronics has been considered by many researchers. Wind energy, solar energy, water energy, mechanical energy from vibrations, etc are common sources of ambient energy. In this thesis, optimization of energy harvesting from ambient vibration using magnetic shape memory alloy is presented. To this end, a clamped-clamped beam coupled with MSMA units is considered. A shock load is applied to a proof mass which is attached to the middle of the beam. As a result of beam vibration a longitudinal strain is produced in the MSMA. This strain changes magnetic flux inside the coil connected to MSMA and as a... 

    Modeling, Analysis and Experimental Investigation of Energy Harvesting via Magnetic Shape Memory Alloys

    , Ph.D. Dissertation Sharif University of Technology Askari Farsangi, Mohammad Amin (Author) ; Sayyadi, Hassan (Supervisor) ; Zakerzadeh, Mohammad Reza (Co-Advisor)
    Abstract
    Vibration based energy harvesting is the process of trapping and collecting vibrational energy from ambient sources which seem unusable at first sight. The smart materials with the capability of coupling two different fields can be used in converting vibrational energy to electrical one. One of this smart material which has been taken into account recently is the Magnetic Shape Memory Alloy (MSMA) and it can couple the magnetic and mechanical fields. In MSMAs the total magnetization vector changes with the application of stress and make it possible to harvest energy from Faraday law’s of induction. An important phenomena that exist in MSMA is the dependency of magnetization-strain behavior... 

    Investigation of Crack and Buckling Effects on Ultimate Capacity of Fixed Offshore Platforms with Dynamic Analysis Approach

    , Ph.D. Dissertation Sharif University of Technology Erfani, Mohammad Hadi (Author) ; Sayyadi, Hassan (Supervisor) ; Tabeshpoor, Mohammad Reza (Supervisor)
    Abstract
    Tubular sections and consequently tubular joints in construction of steel structures in the form of space frames is widely used in ground and marine structures, including offshore jacket platforms. The passage of part of the life of the existing offshore platforms has caused cracks in various parts of the joints of these structures due to various reasons, the most important of which is fatigue. In this thesis, by adopting numerous numerical studies and validations with some cited experimental papers, the principles governing the proper buckling behavior of tubular members focusing on the conventional geometries of Persian Gulf platforms as well as the behavior and local flexibility of... 

    Variable Formation & Decentralized Control of Multi-Quadrotor Having Same Dynamic System Using Consensus Algorithm

    , M.Sc. Thesis Sharif University of Technology Adeli, Ali (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    Since Formation control have potentail applications in civil and military industries, decenterlized control of formation control is studied in this work using consensus algorithm. A specific robot quadrotor with 3D motion is used in this work. Quadrotor is an underactuated vehicle. First, we derivate twice from dynamical equations of linear positions. Hence, we can obtain appropriate form using linearization of output equations for design a consensus control algorithm. It is needed to design fourth order control algorithm for control of multiagent systems, beacause of twice derivation. Two methods that have been used for formation control in many works are potential function method and... 

    Considering the Ctability of Train Movement Based on Wagons Arrangement

    , M.Sc. Thesis Sharif University of Technology Taheri Heravi, Reza (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    The main popuse of this Thesis is investigating of the different wagon arrangement effect on stability of the train set. So to gain this goal, one train with 10 wagons has been simulated. The model of the each wagon is Nonlinear with 40 DOF. 3 of the wagons are heavy and make 3 different kinds of arrangement by putting them at first, middle and the end of the train (HLL, LHL and LLH arrangements). Then these three arrangements have been simulated on two differen tracks and conditions, 1st Accelerating on curved track (320 R) with positive slope and 2nd decelerating on curved track with negative slope.We suppose that the contact is singular point and aslso contact equations have bben solved... 

    Hydrodynamics Modeling and Self Orginizing Control of Marine Vehicles

    , M.Sc. Thesis Sharif University of Technology Taghi, Amir Hossein (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    Dynamic positioning system is a controller system used to maintain the position and heading of a vessel with no use of anchors, jack ups but only using the propellers installed on the vessel. A vessel has six degrees of freedom, including three rotations and three transfer. In dynamic positioning systems, the vessel is controlled only on the horizontal plane such that its position and heading are controlled according to predetermined values. To achieve this, position and heading of the vessel is determined and the controller system computes the direction and required power of each propeller. Preliminary systems utilized PID controllers. As the control science has advanced, model based... 

    Offshore Windfarm Layout Optimization

    , M.Sc. Thesis Sharif University of Technology Ziyaei, Pegah (Author) ; Khorasanchi, Mahdi (Supervisor) ; Sayyadi, Hassan (Co-Supervisor)
    Abstract
    The minimum cost of energy is the goal of the wind farm layout optimization. This can be achieved by either maximizing the total energy or minimizing the total costs of the farm. This thesis considered the effect of wind speed on the performance and thrust coefficients. We also used two sizes of commercial turbines. First, we started by a single variable objective function (turbine cost to generated power), then, considering cable, foundation and O&M modules, objective function changed to a LCOE function which is non-dimensionalized by dividing all the costs to the cost of one turbine. We modified the simple cost model proposed by Mosetti et al., using cost scaling law, and also included... 

    Criteria for Evaluating Bogie Performance For Sustaining Ride Quality

    , Ph.D. Dissertation Sharif University of Technology Shokouhi Dolat Abadi, Nader (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    This thesis proposes a dynamic model for studding influences of suspension components behavior on rail vehicle dynamics. As the air springs are very important isolating component in rail vehicles, a new complete nonlinear air spring model, with taking into consideration of thermo–dynamical effects, is developed. The model coefficients are tuned based on the real test data and it can be easily used in dynamic modeling of air springs. The new proposed vehicle model is a complete track–vehicle model with 70 degree of freedoms which is addressed as a modular type. Experimental results from complete rail–vehicle field test, showed remarkable agreement between proposed model and test results....