Search for: scaffolds--biology
0.011 seconds
Total 80 records

    Simulation of the effects of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a channeled scaffold for engineering myocardium

    , Article Mathematical Biosciences ; Volume 294 , 2017 , Pages 160-171 ; 00255564 (ISSN) Zehi Mofrad, A ; Mashayekhan, S ; Bastani, D ; Sharif University of Technology
    This study proposes a mathematical model to evaluate the impact of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a 3D cardiac construct using computational fluid dynamics (CFD). Flow equations, oxygen balance equation and cell balance equation were solved using special initial and boundary conditions. The modeling results revealed that 55% increase in cardiac cell density occurred by using 6.4% perfluorocarbon oxygen carrier (PFC) compared to pure culture medium without PFC supplementation. Moreover, the effects of the scaffold geometry on cell density were examined by changing the channel numbers and the construct length. A 30% increase in the average cells... 

    Enhanced chondrogenic differentiation of human bone marrow mesenchymal stem cells on PCL/PLGA electrospun with different alignments and compositions

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 67, Issue 1 , 2018 , Pages 50-60 ; 00914037 (ISSN) Zamanlui, S ; Mahmoudifard, M ; Soleimani, M ; Bakhshandeh, B ; Vasei, M ; Faghihi, S ; Sharif University of Technology
    Taylor and Francis Inc  2018
    The simultaneous effect of electrospun scaffold alignment and polymer composition on chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMMSC) is investigated. Aligned and randomly oriented polycaprolactone/poly(lactic-co-glycolic acid) (PLGA) hybrid electrospun scaffolds with two different ratios are fabricated by electrospinning. It is found that aligned nanofibrous scaffolds support higher chondrogenic differentiation of hBMMSCs compared to random ones. The aligned scaffolds show a higher expression level of chondrogenic markers such as type II collagen and aggrecan. It is concluded that the aligned nanofibrous scaffold with higher PLGA ratio could significantly... 

    Porous gelatin/poly(ethylene glycol) scaffolds for skin cells

    , Article Soft Materials ; Volume 15, Issue 1 , 2017 , Pages 95-102 ; 1539445X (ISSN) Vahidi, M ; Frounchi, M ; Dadbin, S ; Sharif University of Technology
    Biocompatible porous polymeric scaffolds provide a suitable environment for proliferation of stem cells in human body. In this research work, porous gelatin–poly(ethylene glycol), PEG, based scaffolds were prepared using combination of freeze-gelation and freeze-extraction methods. Effects of various parameters such as freezing temperature, cross-linking agent, concentrations of gelatin and PEG and their blending ratio on physical and mechanical properties, swelling ratio, porosity, pore size, and degradation rate of scaffolds were investigated. Also, proliferation of fibroblast skin cells on the scaffolds was examined by MTS assay to assess the suitability of the scaffolds in wound healing... 

    Interface engineering of perovskite solar cell using a reduced-graphene scaffold

    , Article Journal of Physical Chemistry C ; Volume 120, Issue 35 , Volume 120, Issue 35 , 2016 , Pages 19531-19536 ; 19327447 (ISSN) Tavakoli, M. M ; Tavakoli, R ; Hasanzadeh, S ; Mirfasih, M. H ; Sharif University of Technology
    American Chemical Society 
    Interface engineering of solar cell device is a prominent strategy to improve the device performance. Herein, we synthesize reduced-graphene scaffold (rGS) by using a new and simple chemical approach. In this regard, we synthesize a hollow structure of graphene and then fabricate a three-dimensional scaffold of graphene with a superior surface area using electrophoretic process. We employ this scaffold as an interface layer between the electron transfer and absorber layers in perovskite solar cell. The characterization tests and photovoltaic results show that rGS improves the carrier transportation, yielding a 27% improvement in device performance as compared to conventional device. Finally,... 

    Mesoscopic oxide double layer as electron specific contact for highly efficient and UV stable perovskite photovoltaics

    , Article Nano Letters ; Volume 18, Issue 4 , 2018 , Pages 2428-2434 ; 15306984 (ISSN) Tavakoli, M. M ; Giordano, F ; Zakeeruddin, S. M ; Gratzel, M ; Sharif University of Technology
    American Chemical Society  2018
    The solar to electric power conversion efficiency (PCE) of perovskite solar cells (PSCs) has recently reached 22.7%, exceeding that of competing thin film photovoltaics and the market leader polycrystalline silicon. Further augmentation of the PCE toward the Shockley-Queisser limit of 33.5% warrants suppression of radiationless carrier recombination by judicious engineering of the interface between the light harvesting perovskite and the charge carrier extraction layers. Here, we introduce a mesoscopic oxide double layer as electron selective contact consisting of a scaffold of TiO2 nanoparticles covered by a thin film of SnO2, either in amorphous (a-SnO2), crystalline (c-SnO2), or... 

    Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces

    , Article Journal of Biomedical Materials Research - Part A ; Volume 101, Issue 10 , 2013 , Pages 2796-2807 ; 15493296 (ISSN) Tamjid, E ; Simchi, A ; Dunlop, J. W. C ; Fratzl, P ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
    Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were... 

    Fabrication of a highly ordered hierarchically designed porous nanocomposite via indirect 3D printing: Mechanical properties and in vitro cell responses

    , Article Materials and Design ; Volume 88 , 2015 , Pages 924-931 ; 02641275 (ISSN) Tamjid, E ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Design and development of biodegradable scaffolds with highly uniform and controlled internal structure that stimulate tissue regeneration are the focus of many studies. The aim of this work is to apply a modified three-dimensional (3D) printing process to fabricate polymer-matrix composites with controlled internal architecture. Computationally-designed plaster molds with various pore sizes in the range of 300-800. μm were prepared by employing 3D printing of a water-based binder. The molds were converted to ε-polycaprolactone (PCL) and PCL/bioactive glass (BG) composite scaffolds by solvent casting and freeze drying methods. Optical and electron microscopy studies revealed that the pore... 

    A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering

    , Article Materials Science and Engineering C ; Volume 70 , 2017 , Pages 897-912 ; 09284931 (ISSN) Tajbakhsh, S ; Hajiali, F ; Sharif University of Technology
    Elsevier Ltd  2017
    The fabrication of a suitable scaffold material is one of the major challenges for bone tissue engineering. Poly(lactic acid) (PLA) is one of the most favorable matrix materials in bone tissue engineering owing to its biocompatibility and biodegradability. However, PLA suffers from some shortcomings including low degradation rate, low cell adhesion caused by its hydrophobic property, and inflammatory reactions in vivo due to its degradation product, lactic acid. Therefore, the incorporation of bioactive reinforcements is considered as a powerful method to improve the properties of PLA. This review presents a comprehensive study on recent advances in the synthesis of PLA-based biocomposites... 

    Human olfactory mucosa stem cells delivery using a collagen hydrogel: As a potential candidate for bone tissue engineering

    , Article Materials ; Volume 14, Issue 14 , 2021 ; 19961944 (ISSN) Simorgh, S ; Milan, P. B ; Saadatmand, M ; Bagher, Z ; Gholipourmalekabadi, M ; Alizadeh, R ; Hivechi, A ; Arabpour, Z ; Hamidi, M ; Delattre, C ; Sharif University of Technology
    MDPI AG  2021
    For bone tissue engineering, stem cell‐based therapy has become a promising option. Re-cently, cell transplantation supported by polymeric carriers has been increasingly evaluated. Herein, we encapsulated human olfactory ectomesenchymal stem cells (OE‐MSC) in the collagen hydrogel system, and their osteogenic potential was assessed in vitro and in vivo conditions. Col-lagen type I was composed of four different concentrations of (4 mg/mL, 5 mg/mL, 6 mg/mL, 7 mg/mL). SDS‐Page, FTIR, rheologic test, resazurin assay, live/dead assay, and SEM were used to characterize collagen hydrogels. OE‐MSCs encapsulated in the optimum concentration of collagen hydrogel and transplanted in rat calvarial... 

    Alginate/cartilage extracellular matrix-based injectable interpenetrating polymer network hydrogel for cartilage tissue engineering

    , Article Journal of Biomaterials Applications ; Volume 36, Issue 5 , 2021 , Pages 803-817 ; 08853282 (ISSN) Shojarazavi, N ; Mashayekhan, S ; Pazooki, H ; Mohsenifard, S ; Baniasadi, H ; Sharif University of Technology
    SAGE Publications Ltd  2021
    In the present study, alginate/cartilage extracellular matrix (ECM)-based injectable hydrogel was developed incorporated with silk fibroin nanofibers (SFN) for cartilage tissue engineering. The in situ forming hydrogels were composed of different ionic crosslinked alginate concentrations with 1% w/v enzymatically crosslinked phenolized cartilage ECM, resulting in an interpenetrating polymer network (IPN). The response surface methodology (RSM) approach was applied to optimize IPN hydrogel's mechanical properties by varying alginate and SFN concentrations. The results demonstrated that upon increasing the alginate concentration, the compression modulus improved. The SFN concentration was... 

    Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by the freeze-gelation method

    , Article Materials Research Express ; Volume 6, Issue 11 , 2019 ; 20531591 (ISSN) Shamloo, A ; Kamali, A ; Bahrani Fard, M. R ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Three-dimensional porous scaffolds are essential in tissue engineering applications. One of the most conventional methods to form porosity in scaffolds is freeze-drying, which is not energy efficient and cost effective. Therefore in this work, it was experimentally investigated whether gelatin, with its unique mechanical properties and cell binding applications, could be used as a comprising polymer of scaffolds with porous structure made by the freeze-gelation method. Chitosan, gelatin and chitosan/gelatin scaffolds were fabricated by the freeze-gelation method and their behaviors, determined by analysis of scanning electron microscopy images, Fourier transform infrared spectroscopy,... 

    In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process

    , Article Materials Science and Engineering C ; Volume 33, Issue 1 , 2013 , Pages 390-396 ; 09284931 (ISSN) Rezaei, A ; Mohammadi, M. R ; Sharif University of Technology
    Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which has been extensively used in medicine as implantable materials, owing to its good biocompatibility, bioactivity high osteoconductive, and/or osteoinductive properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL), a newly remarkable biocompatible and biodegradable polymer, was employed as a matrix and hydroxyapatite nanoparticles were used as a reinforcement element of the composite. HA/PCL nanocomposites were... 

    Development of hydroxyapatite nanorods-polycaprolactone composites and scaffolds derived from a novel in-situ sol-gel process

    , Article Tissue Engineering and Regenerative Medicine ; Volume 9, Issue 6 , 2012 , Pages 295-303 ; 17382696 (ISSN) Rezaei, A ; Mohammadi, M. R ; Sharif University of Technology
    Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which displays splendid biocompatibility and bioactivity properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL) was employed as a matrix and hydroxyapatite nanorods were used as a reinforcement element of the composite. HA/PCL nanocomposites were synthesized by a new in-situ sol-gel process using low cost chemicals. Chemical and physical characteristics of the nanocomposite were studied by X-ray diffraction (XRD),... 

    Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior

    , Article Materials Science and Engineering C ; Volume 103 , 2019 ; 09284931 (ISSN) Razaghzadeh Bidgoli, M ; Alemzadeh, I ; Tamjid, E ; Khafaji, M ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2019
    In order to regenerate bone defects, bioactive hierarchically scaffolds play a key role due to their multilevel porous structure, high surface area, enhanced nutrient transport and diffusion. In this study, novel hierarchically porous silk fibroin (SF) and silk fibroin-bioactive glass (SF-BG) composite were fabricated with controlled architecture and interconnected structure, by combining indirect three-dimensional (3D) inkjet printing and freeze-drying methods. Further, the effect of 45S5 Bioactive glass particles of different sizes (<100 nm and 6 μm) on mechanical strength and cell behavior was investigated. The results demonstrated that the hierarchical structure in this scaffold was... 

    Conductive nanofiber scaffold for bone tissue engineering

    , Article 24th Iranian Conference on Biomedical Engineering and 2017 2nd International Iranian Conference on Biomedical Engineering, ICBME 2017, 30 November 2017 through 1 December 2017 ; 2018 ; 9781538636091 (ISBN) Rasti Boroojeni, F ; Mashayekhan, S ; Abbaszadeh, H. A ; Ansarizadeh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    In order to fabricate nanofiber scaffold for bone tissue engineering, electrospinning technique was employed. This technique produces nanofiberous scaffold supporting cell adhesion, migration, and proliferation. Here, we developed a novel conductive scaffold from poly-caprolactone, gelatin, and poly aniline/graphene nanoparticles. In this study, co-electrospinning was utilized to fabricate composite electrospun scaffold. The effect of polyaniline/graphene (PAG) nanoparticles on the mechanical properties and electrical conductivity of this hybrid scaffold was investigated. The result showed that PAG nanoparticles enbance both mechanical properties and electrical conductivity of the scaffolds.... 

    Natural compounds for skin tissue engineering by electrospinning of nylon-Beta vulgaris

    , Article ASAIO Journal ; Volume 64, Issue 2 , 2018 , Pages 261-269 ; 10582916 (ISSN) Ranjbarvan, P ; Mahmoudifard, M ; Kehtari, M ; Babaie, A ; Hamedi, S ; Mirzaei, S ; Soleimani, M ; Hosseinzadeh, S ; Sharif University of Technology
    Lippincott Williams and Wilkins  2018
    Natural compounds containing polysaccharide ingredients have been employed as candidates for treatment of skin tissue. Herein, for the first time, electrospinning setup was proposed to fabricate an efficient composite nanofibrous structure of Beta vulgaris (obtained from Beet [Chenopodiaceae or Amaranthaceae]) belonged to polysaccharides and an elastic polymer named nylon 66 for skin tissue engineering. Both prepared scaffolds including noncomposite and composite types were studied by Scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, mechanical assay, and contact angle. Scanning electron microscope examinations have approved the uniform and homogeneous... 

    Study of hole-transporter-free perovskite solar cells based on fully printable components

    , Article Micromachines ; Volume 10, Issue 4 , 2019 ; 2072666X (ISSN) Raminafshar, C ; Raptis, D ; Mohammadi, M. R ; Lianos, P ; Sharif University of Technology
    MDPI AG  2019
    Hole-transporter-free perovskite solar cells carrying a carbon back contact electrode provide the possibility of making full printable low cost and stable devices, even though their efficiency is substantially lower than those made in the standard configuration. The present work searched for simple and easy routes for constructing such devices, demonstrating that organic components do enhance device efficiency but only to a level that is not worth the trouble nor the cost. Devices based on a triple mesoporous layer of titania/zirconia/carbon with perovskite infiltration gave an efficiency of 10.7%. After 180 days of storing under ambient conditions, a small loss of efficiency has been... 

    Emerging phospholipid nanobiomaterials for biomedical applications to lab-on-a-chip, drug delivery, and cellular engineering

    , Article ACS Applied Bio Materials ; 2021 ; 25766422 (ISSN) Rahimnejad, M ; Rabiee, N ; Ahmadi, S ; Jahangiri, S ; Sajadi, S. M ; Akhavan, O ; Saeb, M. R ; Kwon, W ; Kim, M ; Hahn, S. K ; Sharif University of Technology
    American Chemical Society  2021
    The design of advanced nanobiomaterials to improve analytical accuracy and therapeutic efficacy has become an important prerequisite for the development of innovative nanomedicines. Recently, phospholipid nanobiomaterials including 2-methacryloyloxyethyl phosphorylcholine (MPC) have attracted great attention with remarkable characteristics such as resistance to nonspecific protein adsorption and cell adhesion for various biomedical applications. Despite many recent reports, there is a lack of comprehensive review on the phospholipid nanobiomaterials from synthesis to diagnostic and therapeutic applications. Here, we review the synthesis and characterization of phospholipid nanobiomaterials... 

    Pressure-engineered electrophoretic deposition for gentamicin loading within osteoblast-specific cellulose nanofiber scaffolds

    , Article Materials Chemistry and Physics ; Volume 272 , 2021 ; 02540584 (ISSN) Rahighi, R ; Panahi, M ; Akhavan, O ; Mansoorianfar, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Multi-component nanocomposite thin films (composed of cellulose nanofiber (CNF), alginate, bioglass nanoparticles (BG NPs) and gentamicin) were prepared by using cathodic electrophoretic deposition (EPD) under different isostatic pressures of 10−2 mbar (LP), atmospheric (AP), and 5 bar (HP). According to thermal gravity analysis, larger amounts of CNF and alginate could be deposited on the surface at the AP condition in comparison with the LP and HP conditions. On the other hand, higher amounts of the BG NPs could be deposited at the LP condition as compared to the other conditions. The drug (gentamicin) loading/releasing of the samples prepared at the HP condition was found to be higher... 

    Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery

    , Article Materials Science and Engineering C ; Volume 113 , 2020 Rafiei, M ; Jooybar, E ; Abdekhodaie, M. J ; Alvi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    In this study, a three-dimensional tablet-like porous scaffold, comprising core-shell fibers to host proteins inside the core, was developed. The fabrication method involved the novel combination of coaxial and wet electrospinning in a single setting. Poly (ε-caprolactone) was chosen as the based polymer and bovine serum albumin was used as a model protein. These 3D tablet-like scaffolds exhibited adequate porosity and suitable pore size for cell culture and cell infiltration, in addition to appropriate mechanical properties for cartilage tissue engineering. The effects of different parameters on the behavior of the system have been studied and the 3D scaffold based on the core-shell fiber...