Loading...
Search for: scanning-electron-microscopy-image
0.009 seconds
Total 34 records

    An electrospun magnetic nanocomposite for a facile micro-scaled analysis approach

    , Article Analytical Methods ; Vol. 6, issue. 15 , 2014 , Pages 5838-5846 ; ISSN: 17599660 Bagheri, H ; Roostaie, A ; Daliri, R ; Sharif University of Technology
    Abstract
    A magnetic polyurethane (PU) nanocomposite was synthesized by an electrospinning technique and applied for isolation and preconcentration of fluoxetine from aquatic and biological samples. The nanocomposite was electrospun using a PU polymer solution containing the dispersed magnetic nanoparticles. The magnetic properties of iron nanoparticles, along with the use of an electrospinning technique, led to the formation of a suitable sorbent toward isolation of fluoxetine. The magnetic PU nanofibers could be subsequently removed from the sample solution by applying a permanent magnet. The scanning electron microscopy (SEM) image of the magnetic PU nanofibers confirms that their diameters are in... 

    Comparative study of the grown ZnO nanostructures on quartz and alumina substrates by vapor phase transport method without catalyst: Synthesis and acetone sensing properties

    , Article Sensors and Actuators, A: Physical ; Vol. 212 , 2014 , Pages 80-86 ; ISSN: 09244247 Hosseini, Z. S ; Mortezaali, A ; Iraji Zad, A ; Sharif University of Technology
    Abstract
    Uniform layers of ZnO nanostructures were formed on quartz and alumina substrates through a simple vapor phase transport (VPT) method without any catalyst or buffer layer by making proper growth conditions. The effect of substrate on morphology, crystalline structure and photoluminescence spectra has been investigated. Scanning electron microscopy images revealed that morphlogical grwoth depends on used substrate, aligned rods with flower-like bundels and entangled rods are vertically aligned rods on the quartz and alumina substrates, respectively. X-ray diffraction studies showed that grown films on the quartz substrates possess stronger c-axis orientation compared to those on the alumina... 

    Evaluation of ascorbic acid-loaded calcium phosphate bone cements: Physical properties and in vitro release behavior

    , Article Ceramics International ; Vol. 40, issue. 3 , April , 2014 , pp. 3961-3968 ; ISSN: 02728842 Hemmati, K ; Hesaraki, S ; Nemati, A ; Sharif University of Technology
    Abstract
    In this study, different concentrations of ascorbic acid (50, 100 and 200 μg/mL) were added to the liquid phase of a calcium phosphate cement (CPC). The cements were immersed in simulated body fluid (SBF) for different intervals and physical, physicochemical and mechanical properties of them were evaluated. The release of added ascorbic acid from CPCs into the SBF solution was also studied. From the results, both setting time and injectability of CPC decreased by adding ascorbic acid, however the compressive strength was sharply increased before soaking in SBF solution. But, the compressive strength values of all cements (with or without ascorbic acid) soaked in SBF solution for more than 7... 

    In situ preparation and property investigation of polypropylene/fumed silica nanocomposites

    , Article Polymer Composites ; Vol. 35, issue. 1 , January , 2014 , pp. 37-44 ; ISSN: 02728397 Azinfar, B ; Ahmad Ramazani, S. A ; Jafariesfad, N ; Sharif University of Technology
    Abstract
    We present the preparation of polypropylene (PP)/fumed silica (FS) nanocomposites via in situ polymerization in this article. The approach includes preparation and utilization of a bisupported Ziegler-Natta catalytic system in which magnesium ethoxide and FS are used as conjugate supports of the catalyst. Catalyst preparation and polymerization processes are carried out in the slurry phase and under argon atmosphere. Scanning electron microscopy images show a good dispersion of the FS throughout the PP matrix. Results from differential scanning calorimetry reveal that the crystallization temperature of prepared nanocomposites increases by increasing FS loading. Also, crystal content of... 

    Effects of preheating temperature and cooling rate on two-step residual stress in thermal barrier coatings considering real roughness and porosity effect

    , Article Ceramics International ; Vol. 40, Issue. 10 , December , 2014 , pp. 15925-15940 ; ISSN: 02728842 Rezvani Rad, M ; Farrahi, G. H ; Azadi, M ; Ghodrati, M ; Sharif University of Technology
    Abstract
    In this research, a finite element model was developed in order to simulate the two-step residual stress distribution of a thermal barrier coating system, considered to be used in diesel engine cylinder head, with a real roughness and real porosity. Two steps including the bond coat and the top coat deposition processes were taken into account. The real geometry of coating layers, including the roughness and the porosity, was also considered based on a scanning electron microscopy image. Then, effects of the convective heat transfer coefficient and initial substrate and substrate/bond coat preheating temperatures on the residual stress were studied. Obtained results illustrate that the... 

    Electrospun polyamide-polyethylene glycol nanofibers for headspace solid-phase microextration

    , Article Journal of Separation Science ; Vol. 37, issue. 14 , 2014 , pp. 1880-1886 ; ISSN: 16159306 Bagheri, H ; Najarzadekan, H ; Roostaie, A ; Sharif University of Technology
    Abstract
    A solution of polyamide (PA) containing polyethylene glycol (PEG) as a side low-molecular-weight polymer was electrospun. After synthesizing the PA-PEG nanofibers, the constituent was subsequently removed (modified PA) and confirmed by Fourier transform infrared spectroscopy. The scanning electron microscopy images showed an average diameter of 640 and 148 nm for PA and PA-PEG coatings, respectively, while the latter coating structure was more homogeneous and porous. The extraction efficiencies of PA, PA-PEG, and the modified PA fiber coatings were assayed by headspace solid-phase microextraction of a number of chlorophenols from real water samples followed by their determination by gas... 

    A highly thermal-resistant electrospun-based polyetherimide nanofibers coating for solid-phase microextraction Microextraction Techniques

    , Article Analytical and Bioanalytical Chemistry ; Vol. 406, issue. 8 , March , 2014 , p. 2141-2149 Bagheri, H ; Akbarinejad, A ; Aghakhani, A ; Sharif University of Technology
    Abstract
    A high-temperature-resisant solid-phase microextraction (SPME) fiber was prepared based on polyetherimide (PEI) by the electrospinning method. The PEI polymeric solution was converted to nanofibers using high voltages and directly coated on a stainless steel SPME needle. The scanning electron microscopy images of PEI coating showed fibers with diameter range of 500-650 nm with a homogeneous and smooth surface morphology. The SPME nanofibers coating was optimized for PEI percentage, electrospinning voltage, and time. The extraction efficiency of the coating was investigated for headspace SPME of some environmentally important polycyclic aromatic hydrocarbons from aqueous samples followed by... 

    Microstructural evolution and fracture behavior of friction-stir-welded Al-Cu laminated composites

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Vol. 45, issue. 1 , 2014 , pp. 361-370 Beygi, R ; Kazeminezhad, M ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook... 

    A novel magnetic poly(aniline-naphthylamine)-based nanocomposite for micro solid phase extraction of rhodamine B

    , Article Analytica Chimica Acta ; Volume 794 , 2013 , Pages 38-46 ; 00032670 (ISSN) Bagheri, H ; Daliri, R ; Roostaie, A ; Sharif University of Technology
    2013
    Abstract
    A novel Fe3O4-poly(aniline-naphthylamine)-based nanocomposite was synthesized by chemical oxidative polymerization process as a magnetic sorbent for micro solid phase extraction. The scanning electron microscopy images of the synthesized nanocomposite revealed that the copolymer posses a porous structure with diameters less than 50nm. The extraction efficiency of this sorbent was examined by isolation of rhodamine B, a mutagenic and carcinogenic dye, from aquatic media in dispersion mode. Among different synthesized polymers, Fe3O4/poly(aniline-naphthylamine) nanocomposite showed a prominent efficiency. Parameters including the desorption solvent, amount of sorbent, desorption time, sample... 

    Preparation of ultrahigh-molecular-weight polyethylene/carbon nanotube nanocomposites with a Ziegler-Natta catalytic system and investigation of their thermal and mechanical properties

    , Article Journal of Applied Polymer Science ; Volume 125, Issue SUPPL. 1 , 2012 , Pages E453-E461 ; 00218995 (ISSN) Amoli, B. M ; Ramazani, S. A. A ; Izadi, H ; Sharif University of Technology
    Wiley  2012
    Abstract
    In this research, ultrahigh-molecular-weight polyethylene (UHMWPE)/multiwalled carbon nanotube (MWCNT) nanocomposites with different nanotube concentrations (0.5, 1.5, 2.5, and 3.5 wt %) were prepared via in situ polymerization with a novel, bisupported Ziegler-Natta catalytic system. Magnesium ethoxide [Mg(OEt) 2] and surface-functionalized MWCNTs were used as the support of the catalyst. Titanium tetrachloride (TiCl 4) accompanied by triethylaluminum constituted the Ziegler-Natta catalytic system. Preparation of the catalyst and the polymerization were carried out in the slurry phase under an argon atmosphere. Support of the catalyst on the MWCNTs was investigated with Fourier transform... 

    Aniline-silica nanocomposite as a novel solid phase microextraction fiber coating

    , Article Journal of Chromatography A ; Volume 1238 , May , 2012 , Pages 22-29 ; 00219673 (ISSN) Bagheri, H ; Roostaie, A ; Sharif University of Technology
    2012
    Abstract
    A new unbreakable solid phase microextraction (SPME) fiber coating based on aniline-silica nanocomposite was electrodeposited on a stainless steel wire. The electropolymerization process was carried out at a constant deposition potential, applied to the corresponding aqueous electrolyte containing aniline and silica nanoparticles. The scanning electron microscopy (SEM) images showed the non-smooth and the porous surface structure of the prepared nanocomposite. The applicability of the new fiber coating was examined by headspace-solid phase microextraction (HS-SPME) of some environmentally important polycyclic aromatic hydrocarbons (PAHs), as model compounds, from aqueous samples.... 

    Novel polyamide-based nanofibers prepared by electrospinning technique for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples

    , Article Analytica Chimica Acta ; Volume 716 , 2012 , Pages 34-39 ; 00032670 (ISSN) Bagheri, H ; Aghakhani, A ; Baghernejad, M ; Akbarinejad, A ; Sharif University of Technology
    2012
    Abstract
    A novel solid phase microextraction (SPME) fiber was fabricated by electrospinning method in which a polymeric solution was converted to nanofibers using high voltages. A thin stainless steel wire was coated by the network of polymeric nanofibers. The polymeric nanofiber coating on the wire was mechanically stable due to the fine and continuous nanofibers formation around the wire with a three dimensional structure. Polyamide (nylon 6), due to its suitable characteristics was used to prepare the unbreakable SPME nanofiber. The scanning electron microscopy (SEM) images of this new coating showed a diameter range of 100-200nm for polyamide nanofibers with a homogeneous and porous surface... 

    Optimal Ag concentration for H2 production via Ag:TiO 2 nanocomposite thin film photoanode

    , Article International Journal of Hydrogen Energy ; Volume 37, Issue 4 , Feb , 2012 , Pages 3056-3065 ; 03603199 (ISSN) Naseri, N ; Kim, H ; Choi, W ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    TiO2 thin films containing different concentrations of Ag nanoparticles have been synthesized by sol-gel method. According to UV-visible spectra, presence of an intense surface plasmon resonance peak at 490 nm of wavelength indicated formation of silver nanoparticles in the TiO2 films. Based on atomic force microscopy (AFM) analysis, the surface roughness and the effective surface ratio increased by increasing the Ag mol%. Moreover, scanning electron microscopy (SEM) images showed formation of Ag nanoparticles on the surface for the samples containing high Ag concentration. X-ray diffraction (XRD) patterns revealed that the size of Ag nanocrystals increased by increasing the Ag content in... 

    The Pt/Ni modified TiO 2 nanotubes and its catalytic activity toward glucose

    , Article ECS Transactions, 1 May 2011 through 6 May 2011 ; Volume 35, Issue 35 , May , 2011 , Pages 63-69 ; 19385862 (ISSN) ; 9781607682950 (ISBN) Mahshid, S. S ; Mahshid, S ; Ghahremaninezhad, A ; Dolati, A ; Ghorbani, M ; Luo, S ; Yang, L ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    The catalytic activity of Pt/Ni/TiO 2 nanotubes electrode toward glucose has been studied. Fabrication of Pt/Ni nanostructures was done in a single-bath solution through electrochemical pulse method by changing the deposition potential between -0.3 and -4 V vs. SCE, respectively. The resulting modified electrode represented high conductivity due to the effective presence of metallic components and uniform surface area caused by dispersion of Pt and Ni nanostructures. The scanning electron microscopy images also confirmed that a large amount of metals colonies were well-dispersed at the edge of the TiO 2 nanotubes. In addition, the Pt/Ni TiO 2 nanotubes modified electrode exhibited an... 

    Novel unbreakable solid-phase microextraction fiber by electrodeposition of silica sol-gel on gold

    , Article Journal of Separation Science ; Volume 34, Issue 22 , 2011 , Pages 3246-3252 ; 16159306 (ISSN) Bagheri, H ; Sistani, H ; Ayazi, Z ; Sharif University of Technology
    Abstract
    A new technique for preparation of an unbreakable solid-phase microextraction (SPME) fiber, using sol-gel technology is developed. Primarily, an ultrathin two-dimensional intermediate film was prepared by hydrolysis of 3-(trimethoxysilyl)-1-propanthiol self-assembled monolayer grafted onto gold, then a stationary phase by electrodeposition of 3-(trimethoxysilyl) propylmethacrylate as a precursor, tetramethyl orthosilicate and polyethylene glycol as a coating polymer was produced. The scanning electron microscopy images revealed that the new fiber exhibits a rather porous and homogenous surface. The thermal stability of the fabricated fiber was investigated by thermogravimetric analysis. The... 

    A well-dispersed Pt/Ni/TiO 2 nanotubes modified electrode as an amperometric non-enzymatic glucose biosensor

    , Article Sensor Letters ; Volume 9, Issue 5 , October , 2011 , Pages 1598-1605 ; 1546198X (ISSN) Mahshid, S. S ; Luo, S ; Yang, L ; Mahshid, S ; Dolati, A ; Ghorbani, M ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    In this study a novel Pt/Ni nanostructure consisting of nano-bushes and nanocubes was fabricated onto TiO 2 nanotubes. The scanning electron microscopy images showed that a large amount of well-dispersed nano-architectures had uniformly covered all over the surface which made an electrode with high surface area. It was obviously seen that the nanocube structures mainly consists of Ni had been grown on top of each other while the Pt colonies represented bush-like structures. As a non-enzymatic glucose biosensor, the Pt/Ni TiO 2 nanotubes modified electrode exhibited an excellent performance. The proposed biosensor had two linear ranges for detection of glucose from 0 to 0.12 mM (correlation... 

    Novel nanofiber coatings prepared by electrospinning technique for headspace solid-phase microextraction of chlorobenzenes from environmental samples

    , Article Analytical Methods ; Volume 3, Issue 6 , Apr , 2011 , Pages 1284-1289 ; 17599660 (ISSN) Bagheri, H ; Aghakhani, A ; Sharif University of Technology
    2011
    Abstract
    Novel unbreakable solid phase microextraction (SPME) fiber coatings were fabricated by electrospinning method in which the polymeric solution was converted to nanofibers using high voltages. Four different polymers, polyurethane (PU), polycarbonate (PC), polyamide (PA) and polyvinyl chloride (PVC) were prepared as the fiber coatings on thin stainless steel wires. The extraction efficiencies of new coatings were investigated by headspace solid-phase microextraction (HS-SPME) of some environmentally important chlorobenzenes from aqueous samples followed by gas chromatography-mass spectrometry (GC-MS) analysis. Among them, PU showed a prominent efficiency. Effects of coating time and polymer... 

    Visible light active Au:TiO2 nanocomposite photoanodes for water splitting: Sol-gel vs. sputtering

    , Article Electrochimica Acta ; Volume 56, Issue 3 , January , 2011 , Pages 1150-1158 ; 00134686 (ISSN) Naseri, N ; Sangpour, P ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    In this study, pure TiO2 and Au:TiO2 nanocomposite thin films are both synthesized using sol-gel and RF reactive co-sputtering methods. Physical and photoelectrochemical properties of the thin films deposited by each method are compared. The optical density spectra and scanning electron microscopy images of the Au:TiO2 films reveal formation of gold nanoparticles in the all nanocomposite films synthesized by two methods. Moreover, the optical bandgap energy of the thin films decreases with addition of Au nanoparticles. X-ray photoelectron spectroscopy indicates that the presence of gold in metallic state and the formation of TiO2 is stoichiometric. The photoelectrochemical properties of the... 

    Self-organized titanium oxide nanotubes prepared in phosphate electrolytes: Effect of voltage and fluorine concentration

    , Article ECS Transactions, 25 April 2010 through 30 April 2010 ; Volume 28, Issue 7 , April , 2010 , Pages 67-74 ; 19385862 (ISSN) ; 9781607681830 (ISBN) Mahshid, S ; Dolati, A ; Goodarzi, M ; Askari, M ; Ghahramaninezhad, A ; ECS All Divisions ; Sharif University of Technology
    2010
    Abstract
    TiO2 a nanotube array was prepared using an anodization process. The process proceeded in a two-electrode cell containing of platinum sheet as the cathode electrode. Two phosphate-base electrolyte solutions containing different amounts of HF and NH4F were prepared. Different concentration of fluorine ions were examined in respected electrolytes. Current transient techniques were used to produce the TiO2 nanotubes at constant voltage of 18-25V. It was revealed that anodization at 18-22V, in so-called electrolytes would end up to nano-tubular structure. However the tubular structure prepared at 20V and from phosphate electrolyte containing of 0.5 wt% NH4F as well as 0.5 wt% HF, was recognized... 

    Constructing BiVO4/Graphene/TiO2 nanocomposite photoanode for photoelectrochemical conversion applications

    , Article Journal of Electroanalytical Chemistry ; Volume 763 , 2016 , Pages 1-9 ; 15726657 (ISSN) Yousefzadeh, S ; Faraji, M ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    BiVO4/Graphene/TiO2 as a novel nanocomposite photoanode was designed, synthesized and characterized for photoelectrochemical application. BiVO4/Graphene nanocomposite was initially synthesized by photocatalytic process and then, BiVO4/Graphene/TiO2 nanocomposite thin film was prepared by deposition of the BiVO4/Graphene solution onto the surface of sol-gel derived TiO2 thin film. Morphology, crystal structure, surface chemical composition and optical properties of the synthesized BiVO4/Graphene/TiO2 nanocomposite thin film were characterized and compared with the BiVO4/Graphene and pure TiO2 samples. Observations of scanning electron microscopy (SEM) images revealed that the surface of the...