Loading...
Search for: second-law-analysis
0.011 seconds

    Second law analysis of an infinitely segmented magnetohydrodynamic generator

    , Article Journal of Magnetism and Magnetic Materials ; Volume 426 , 2017 , Pages 294-301 ; 03048853 (ISSN) Arash, A ; Saidi, M. H ; Najafi, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The performance of an infinitely segmented magnetohydrodynamic generator is analyzed using the second law of thermodynamics entropy generation criterion. The exact analytical solution of the velocity and temperature fields are provided by applying the modified Hartmann flow model, taking into account the occurrence of the Hall effect in the considered generator. Contributions of heat transfer, fluid friction, and ohmic dissipation to the destruction of useful available work are found, and the nature of irreversibilities in the considered generator is determined. In addition, the electrical isotropic efficiency scheme is used to evaluate the generator performance. Finally, the implication of... 

    Second law analysis of a magnetohydrodynamic plasma generator

    , Article Energy ; Volume 32, Issue 9 , 2007 , Pages 1603-1616 ; 03605442 (ISSN) Saidi, M. H ; Montazeri, A ; Sharif University of Technology
    Elsevier Ltd  2007
    Abstract
    The performance of an MHD generator utilizing plasma as working fluid has been assessed from the viewpoint of the second law of thermodynamics. The plasma flow in the generator linear duct has been solved by dividing the channel cross-section to an inviscid core region and the viscous boundary layers in the vicinity of the walls. The Hall effect has been taken into account and equilibrium ionization has been assumed. The dependence of the plasma properties such as Hall parameter, the coefficients of thermal and electrical conductivity, and viscosity on the plasma state has also been considered. Using the information obtained on the plasma behaviour in the generator, the entropy generation... 

    Free convection analysis in a Γ-shaped heat exchanger using lattice Boltzmann method employing second law analysis and heatline visualization

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 29, Issue 9 , 2019 , Pages 3056-3074 ; 09615539 (ISSN) KhakRah, H ; Mohammaei, M ; Hooshmand, P ; Bagheri, N ; Hasani Malekshah, E ; Sharif University of Technology
    Emerald Group Publishing Ltd  2019
    Abstract
    Purpose: The nanofluid flow and heat transfer within a heat exchanger, with different thermal arrangements of internal active bodies, are investigated. Design/methodology/approach: For the numerical simulations, the lattice Boltzmann method is utilized. The KKL model is used to predict the dynamic viscosity of CuO-water nanofluid. Furthermore, the Brownian method is taken account using this model. The influence of shapes of nanoparticles on the heat transfer performance is considered. Findings: The results show that the platelet nanoparticles render higher average Nusselt number showing better heat transfer performance. In order to perform comprehensive analysis, the heatline visualization,... 

    First and second law analysis of fluid flow in the regenerator of pulse tube refrigerators

    , Article 2010 14th International Heat Transfer Conference, IHTC 14, 8 August 2010 through 13 August 2010, Washington, DC ; Volume 4 , 2010 , Pages 247-255 ; 9780791849392 (ISBN) Roshanghalb, F ; Saidi, M. H ; Jafarian, A ; Imanimehr, F ; Asadi, M ; Sharif University of Technology
    2010
    Abstract
    The objective of the present work is to analyze the performance of the regenerator of pulse tube refrigerators. Hydrodynamic and thermal behavior of the regenerator is investigated in this respect. To consider the system performance, a system of conservation equations including two energy equations for the regenerator as a porous media is employed. The present model considers one dimensional periodic unsteady compressible flow in the regenerator. The conservation equations are transformed by implementing the volumetric average scheme. Method of harmonic approximation is employed to derive an analytical solution. To explore the system performance, net energy flow and entropy generation...