Loading...
Search for: secondary-batteries
0.006 seconds
Total 38 records

    SnO2@a-Si core-shell nanowires on free-standing CNT paper as a thin and flexible Li-ion battery anode with high areal capacity

    , Article Nanotechnology ; Volume 28, Issue 25 , 2017 ; 09574484 (ISSN) Abnavi, A ; Sadati Faramarzi, M ; Abdollahi, A ; Ramzani, R ; Ghasemi, S ; Sanaee, Z ; Sharif University of Technology
    Institute of Physics Publishing  2017
    Abstract
    Here, we report 3D hierarchical SnO2 nanowire (NW) core-amorphous silicon shell on free-standing carbon nanotube paper (SnO2@a-Si/CNT paper) as an effective anode for flexible lithium-ion battery (LIB) application. This binder-free electrode exhibits a high initial discharge capacity of 3020 mAh g-1 with a large reversible charge capacity of 1250 mAh g-1 at a current density of 250 mA g-1. Compared to other SnO2 NW or its core-shell nanostructured anodes, the fabricated SnO2@a-Si/CNT structure demonstrates an outstanding performance with high mass loading (∼5.9 mg cm-2), high areal capacity (∼5.2 mAh cm-2), and large volumetric capacity (∼1750 mAh cm-3) after 25 cycles. Due to the... 

    Synthesis and characterization of co-doped TiO2 thin films on glass-ceramic

    , Article Materials Science in Semiconductor Processing ; Vol. 26, Issue 1 , October , 2014 , pp. 41-48 ; ISSN: 13698001 Ahmadi, N ; Nemati, A ; Solati-Hashjin, M ; Sharif University of Technology
    Abstract
    In this research, an attempt was made to improve TiO2 photo-catalyst properties, thus pure, N-Ce co-doped TiO2 thin films were prepared on glass-ceramic substrate using a sol-gel dip-coating technique. The samples were calcinated in air at 475 °C, 550°C, and 650°C for 2 h. The result of simultaneous thermal analysis (STA) and X-ray diffraction (XRD) showed that the presence of Ce in TiO2 could inhibit the phase transformation from anatase to rutile and enhance the thermal stability, and anatase was the dominant phase in N-Ce co-doped TiO2 samples. Also based on the results, the doping results in decreasing the size of TiO 2 crystallite. The results of ultra violet-visible light diffuse... 

    Plug-in hybrid electric vehicle battery charger with soft-switched dual-bridge resonant converter for smart grid applications

    , Article 7th IEEE International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2016, 27 June 2016 through 30 June 2016 ; 2016 ; 9781467386166 (ISBN) Akbari, R ; Ebrahimi, S ; Tahami, F ; Oraee, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Battery chargers are fundamental components for successful deployment of plug-in hybrid electric vehicles (PHEVs) into future smart grid. Recently, an integrated isolated bidirectional battery charger has been proposed for PHEV applications. The proposed charger eliminates the conventional bulky dc-link capacitor by feeding a dual-bridge resonant tank directly from the three-phase grid. The disadvantages associated with the presented charger are the high number of semiconductor switches which contribute to high cost and switching losses of converter as well as complicated control circuitry. In this paper, the previous structure is modified to address the aforementioned drawbacks and is... 

    Cobalt based Metal Organic Framework/Graphene nanocomposite as high performance battery-type electrode materials for asymmetric Supercapacitors

    , Article Journal of Energy Storage ; 2020 Azadfalah, M ; Sedghi, A ; Hosseini, H ; Kashani, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Recently, development of advanced materials of metal-organic frameworks (MOFs) has attracted attention for the fabrication of supercapacitors (SCs) because of their high surface area and high level of porosity. However, poor electrical conductivity and weak mechanical properties of the MOFs have restricted their applications in the field. In this study, a one-step, in-situ synthesis of Cobalt-based MOF with graphene (CoMG nanocomposite) was employed to overcome the poor properties of MOFs. Accordingly, when the nanocomposite (CoMG5) was use as a supercapacitor electrode material, a specific capacitance (CS) of 549.96 F g−1 was observed in a three-electrode system with 6 M KOH electrolyte... 

    Cobalt based metal organic framework/graphene nanocomposite as high performance battery-type electrode materials for asymmetric supercapacitors

    , Article Journal of Energy Storage ; Volume 33 , 2021 ; 2352152X (ISSN) Azadfalah, M ; Sedghi, A ; Hosseini, H ; Kashani, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Recently, development of advanced materials of metal-organic frameworks (MOFs) has attracted attention for the fabrication of supercapacitors (SCs) because of their high surface area and high level of porosity. However, poor electrical conductivity and weak mechanical properties of the MOFs have restricted their applications in the field. In this study, a one-step, in-situ synthesis of Cobalt-based MOF with graphene (CoMG nanocomposite) was employed to overcome the poor properties of MOFs. Accordingly, when the nanocomposite (CoMG5) was use as a supercapacitor electrode material, a specific capacitance (CS) of 549.96 F g−1 was observed in a three-electrode system with 6 M KOH electrolyte... 

    An isolated bidirectional integrated plug-in hybrid electric vehicle battery charger with resonant converters

    , Article Electric Power Components and Systems ; Volume 44, Issue 12 , 2016 , Pages 1371-1383 ; 15325008 (ISSN) Ebrahimi, S ; Akbari, R ; Tahami, F ; Oraee, H ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    Plug-in hybrid electric vehicles draw electricity from the electrical grid and store energy in their batteries. To increase charge availability for plug-in hybrid electric vehicles, on-board chargers can be used, which should be small in size and lightweight. In this article, an on-board bidirectional soft-switched battery charger is proposed that utilizes a phase-shift-controlled dual-bridge series resonant converter with isolation. The bidirectional characteristic of proposed charger makes it suitable for vehicle-to-grid operation (i.e., injecting power from the vehicle to the grid) in smart grids. A switching control scheme is also proposed to provide soft-switching operation for all... 

    Optimization of multiple transmission layouts for minimal energy consumption of a battery electric vehicle

    , Article Scientia Iranica ; Volume 26, Issue 4A , 2019 , Pages 2382-2393 ; 10263098 (ISSN) Farjam, T ; Foumani, M. S ; Delkhosh, M ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    Battery Electric Vehicles (BEVs) are a promising solution for reducing the impacts of passenger vehicles on the environment. However, their driving range is restricted due to the limitations of battery technologies. This range can be extended by adoption of multiple-speed transmissions. Most of the comparisons in the related studies are based on non-optimal designs or limited to modal driving cycles. Furthermore, the impact of Power-Split. Continuously Variable Transmission (PS-CVT) layout with type III power How on the power consumption of BEVs has never been examined. In this paper, single-, two-, and three-speed transmissions along with PS-C'VTs with type I and III power flows are... 

    Optimization of multiple transmission layouts for minimal energy consumption of a battery electric vehicle

    , Article Scientia Iranica ; Volume 26, Issue 4A , 2019 , Pages 2382-2393 ; 10263098 (ISSN) Farjam, T ; Saadat Foumani , M ; Delkhosh, M ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    Battery Electric Vehicles (BEVs) are a promising solution for reducing the impacts of passenger vehicles on the environment. However, their driving range is restricted due to the limitations of battery technologies. This range can be extended by adoption of multiple-speed transmissions. Most of the comparisons in the related studies are based on non-optimal designs or limited to modal driving cycles. Furthermore, the impact of Power-Split. Continuously Variable Transmission (PS-CVT) layout with type III power How on the power consumption of BEVs has never been examined. In this paper, single-, two-, and three-speed transmissions along with PS-C'VTs with type I and III power flows are... 

    A practical scheme to involve degradation cost of lithium-ion batteries in Vehicle-to-Grid applications

    , Article IEEE Transactions on Sustainable Energy ; Volume 7, Issue 4 , Volume 7, Issue 4 , 2016 , Pages 1730-1738 ; 19493029 (ISSN) Farzin, H ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    This paper concentrates on degradation of electric vehicle (EV) lithium-ion batteries in vehicle-to-grid (V2G) programs and proposes a practical wear cost model for EVs charge scheduling applications. As the first step, all the factors affecting the cycle life of lithium-ion batteries are identified and their impacts on degradation process are investigated. Subsequently, a general model for battery loss of cycle life is devised incorporating all the pertinent factors associated with charging and discharging activities in V2G applications. Modeling the battery wear cost as a series of equal-payments over the cycle life, a mechanism for calculating the cost incurred by EV users due to... 

    Effects of nucleation agents on the preparation of transparent glass-ceramics

    , Article Journal of the European Ceramic Society ; Volume 32, Issue 11 , August , 2012 , Pages 2989-2994 ; 09552219 (ISSN) Ghasemzadeh, M ; Nemati, A ; Baghshahi, S ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Formation of transparent glass-ceramic in the system MgO-SiO 2-Al 2O 3-K 2O-B 2O 3-F with and without addition of LiF and NaF has been investigated. Crystallization of glass-sample was conducted by controlled thermal heat-treatment, at determined nucleation and crystallization temperatures. In this regard, the effects of addition of LiF and NaF were investigated on the crystallization behavior and transparency of the samples. Low transmission (less than 80% at 600. nm) was observed in the basic composition (K).The addition of NaF and LiF caused more intense phase separation in the system. The results indicated that the glass-ceramic can remain transparent if fine grains with nano size are... 

    RuO2/MWCNT/ stainless steel mesh as a novel positive electrode in vanadium redox flow batteries

    , Article RSC Advances ; Volume 5, Issue 84 , Aug , 2015 , Pages 68378-68384 ; 20462069 (ISSN) Gobal, F ; Faraji, M ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    The present work describes the preparation and electrochemical characterization of RuO2/MWCNT/Stainless Steel Mesh (SSM) electrode as compared with a MWCNT/SSM electrode in the positive half-cell of a Vanadium Redox Flow Battery (VRFB). The electrochemical characterization of prepared electrode was carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge procedures. The electrochemical activity of MWCNT/SSM modified with RuO2 as positive electrode in a VRFB was notably improved. The RuO2-included electrodes demonstrated high peak current ratio, small peak potential difference and high electron... 

    Properties, crystallization mechanism and microstructure of lithium disilicate glass-ceramic

    , Article Journal of Non-Crystalline Solids ; Volume 356, Issue 4-5 , 2010 , Pages 208-214 ; 00223093 (ISSN) Goharian, P ; Nemati, A ; Shabanian, M ; Afshar, A ; Sharif University of Technology
    Abstract
    In this study, lithium disilicate glass-ceramic in the TiO2-ZrO2-Li2O-CaO-Al2O3-SiO2 system was investigated for dentistry applications by incorporation of P2O5 and Nb2O5 as nucleation agent. The influence of the particles size (nano and submicron size) and nucleating agents on the crystalline phases, microstructure, crystallization mechanism and mechanical properties were investigated. Our data indicated that in ceramic glass with nano and submicron P2O5, the main crystalline phase was lithium disilicate. The results also showed that change of P2O5 particle's size had significant effect on the crystalline phases and microstructure. By replacement of submicron P2O5 with submicron Nb2O5,... 

    Preparation and characterisation of diopside-based glass-ceramic foams

    , Article Ceramics International ; Volume 38, Issue 3 , 2012 , Pages 2005-2010 ; 02728842 (ISSN) Hasheminia, S ; Nemati, A ; Eftekhari Yekta, B ; Alizadeh, P ; Sharif University of Technology
    2012
    Abstract
    Foaming and crystallisation behaviours of compacted glass powders based on a diopside glass-ceramic composition were investigated using the sintering route. The foaming agent was 2 wt.% SiC particles. The effect of PbO on the foaming ability of glasses was investigated. The results showed that the addition of PbO not only improved the foaming ability, by improving the wettability of the glass-SiC particles but also increased the crystallisation temperature and widened the temperature interval between the dilatometric softening point and the onset of crystallisation. The glass-SiC wetting angle was decreased from 85°for the lead-free glass, to 55°for the glass that contains 15 wt.% PbO  

    Ball mill assisted synthesis of Na3MnCO3PO4 nanoparticles anchored on reduced graphene oxide for sodium ion battery cathodes

    , Article Electrochimica Acta ; Volume 220 , 2016 , Pages 683-689 ; 00134686 (ISSN) Hassanzadeh, N ; Sadrnezhaad, S. K ; Chen, G ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Na3MnCO3PO4 (NMCP) particles were synthesized via ball milling of Mn(NO3)2.4H2O, Na2HPO4.2H2O and Na2CO3.H2O powders. The particles were anchored onto reduced graphene oxide (rGO) sheets during hydrothermal reduction process under stirring. Materials produced were characterized by x-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric (TG) measurement and galvanostatic charge/discharge tests. Results showed that dissolution of ball milling products in DI water is an effective method for separation of NMCP from byproducts. Best milling time for production of pure NMCP of minimum particle... 

    In-situ hydrothermal synthesis of Na3MnCO3PO4/rGO hybrid as a cathode for Na-ion battery

    , Article Electrochimica Acta ; Volume 208 , 2016 , Pages 188-194 ; 00134686 (ISSN) Hassanzadeh, N ; Sadrnezhaad, S. K ; Chen, G ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Novel Na3MnCO3PO4 (NMCP)/reduced graphene oxide (rGO) nanocomposite was successfully synthesized via one-step hydrothermal method. The produced materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetry (TG), galvanostatic charge/discharge test and inductively coupled plasma optical emission spectroscopy (ICP-OES). Obtained results indicate the formation of ∼25 nm NMCP nanoparticles randomly distributed on rGO sheets. As a promising cathode material for Na-ion batteries, the hybrids deliver gravimetric discharge capacities of... 

    Battery energy storage systems and demand response applied to power system frequency control

    , Article International Journal of Electrical Power and Energy Systems ; Volume 136 , 2022 ; 01420615 (ISSN) Hosseini, S.A ; Toulabi, M ; Ashouri Zadeh, A ; Ranjbar, A. M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this paper, several new control strategies for employing the battery energy storage systems (BESSs) and demand response (DR) in the load frequency control (LFC) task are proposed. In this way, first, the unit commitment problem considering the BESSs’ constraints in presence of wind farms and responsive loads is solved and the best location and the optimal size of the BESSs as well as the regulation power of the responsive loads are obtained. A rule-based plan is then suggested to improve the frequency regulation considering participation of wind farms. This plan is takes into account different states associated with power system frequency response as well as BESSs’ state of charge (SOC).... 

    Leakage-aware battery lifetime analysis using the calculus of variations

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 67, Issue 12 , June , 2020 , Pages 4829-4841 Jafari Nodoushan, M ; Safaei, B ; Ejlali, A ; Chen, J.-J ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Due to non-linear factors such as the rate capacity and the recovery effect, the shape of the battery discharge curve plays a significant role in the overall lifetime of the batteries. Accordingly, this paper proposes a simple heuristic battery-aware speed scheduling policy for periodic and non-periodic real-time tasks in Dynamic Voltage Scaling (DVS) systems with non-negligible leakage/static power. A set of comprehensive analysis has been conducted to compare the battery efficiency of the proposed policies with an optimal solution, which could be derived via the Calculus of Variations (CoV). These evaluations have taken into account both periodic and non-periodic tasks in DVS-based... 

    Method for load sharing and power management in a hybrid PV/battery source islanded microgrid

    , Article 7th Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2016, 16 February 2016 through 18 February 2016 ; 2016 , Pages 652-657 ; 9781509003754 (ISBN) Karimi, Y ; Oraee, H ; Guerrero, J. M ; Vasquez, J. C ; Savaghebi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    This paper presents a decentralized load sharing and power management method for an islanded microgrid composed of PV units, battery units and hybrid PV/battery units. The proposed method performs all the necessary tasks such as load sharing among the units, battery charging and discharging and PV power curtailment with no need to any communication among the units. The proposed method is validated experimentally  

    Decentralized method for load sharing and power management in a hybrid single/three-phase-islanded microgrid consisting of hybrid source PV/battery units

    , Article IEEE Transactions on Power Electronics ; Volume 32, Issue 8 , 2017 , Pages 6135-6144 ; 08858993 (ISSN) Karimi, Y ; Oraee, H ; Guerrero, J. M ; Sharif University of Technology
    Abstract
    This paper proposes a new decentralized power management and load sharing method for a photovoltaic (PV)-based, hybrid single/three-phase-islanded microgrid consisting of various PV units, battery units, and hybrid PV/battery units. The proposed method is not limited to the systems with separate PV and battery units, and power flow among different phases is performed automatically through three-phase units. The proposed method takes into account the available PV power and battery conditions of the units to share the load among them. To cover all possible conditions of the microgrid, the operation of each unit is divided into five states in single-phase units and seven states in three-phase... 

    Decentralized method for load sharing and power management in a PV/battery hybrid source Islanded microgrid

    , Article IEEE Transactions on Power Electronics ; Volume 32, Issue 5 , 2017 , Pages 3525-3535 ; 08858993 (ISSN) Karimi, Y ; Oraee, H ; Golsorkhi, M. S ; Guerrero, J. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based islanded microgrid consisting of various photovoltaic (PV) units, battery units and hybrid PV/battery units. Unlike the previous methods in the literature, there is no need to communication among the units and the proposed method is not limited to the systems with separate PV and battery units or systems with only one hybrid unit. The proposed method takes into account the available PV power and battery conditions of the units to share the load among them. To cover all possible conditions of the microgrid, the operation of each unit is divided into five states and modified active...