Loading...
Search for: semiempirical-models
0.002 seconds

    Semi-empirical modelling of hydraulic conductivity of clayey soils exposed to deionized and saline environments

    , Article Journal of Contaminant Hydrology ; Volume 249 , 2022 ; 01697722 (ISSN) Hedayati Azar, A ; Sadeghi, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Clay liners are widely used as porous membrane barriers to control solute transport and to prevent the leakage of leachate both in horizontal and vertical flow scenarios, such as the isolated base and ramps of sanitary landfills. Despite the primary importance of saturated hydraulic conductivity in a reliable simulation of fluid flow through clay barriers, there is no model to predict hydraulic conductivity of clayey soils permeated with saline aqueous solutions because most of the current models were developed for pure water. Therefore, the main motivation behind this study is to derive semi-empirical models for simulating the hydraulic conductivity of clayey soils in the presence of... 

    Harmful algal blooms (red tide): a review of causes, impacts and approaches to monitoring and prediction

    , Article International Journal of Environmental Science and Technology ; Volume 16, Issue 3 , 2019 , Pages 1789-1806 ; 17351472 (ISSN) Zohdi, E ; Abbaspour, M ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2019
    Abstract
    Red tide, an impermanent natural phenomenon including harmful algal blooms, causes changing the color of the sea generally to red or almost brown, and has a serious impact on environment along the coast and aquatic ecosystem. Due to recent extensive steady harmful algal blooms events that cause adverse impacts on human healthsome, aquaculture and tourism industry, and the entire economy of the coastal region, the need of society for realizing these phenomena is much greater than the past. In the recent decades, consideration of algal blooms and determination of bloom-former species and fundamental researches about dynamics of blooms are increased worldwide. Development in technology has... 

    Theoretical and experimental analysis of the thermal, fade and wear characteristics of rubber-based composite friction materials

    , Article Wear ; Volume 269, Issue 1-2 , May , 2010 , Pages 145-151 ; 00431648 (ISSN) Saffar, A ; Shojaei, A ; Arjmand, M ; Sharif University of Technology
    2010
    Abstract
    An attempt was made to examine thermal effects as well as fade and wear characteristics of rubber-based friction materials (RBFMs). A series of RBFMs with and without fiber reinforcements were prepared. The fiber reinforcements used were carbon fiber, cellulose fiber and aramid pulp. A semi-empirical model describing the correlation of coefficient of friction (COF) and temperature was presented. The effectiveness of the model was evaluated using the experimental data. The results revealed that the model parameters for a given composite show a significant change above a critical sliding velocity, i.e. 300 rpm. This behavior was speculated to be due to the transition of rubbery state of the... 

    CFD-aided simulation of frost growth inside a narrow duct with uniform wall temperature variation

    , Article ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2014, Collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting ; 2014 ; ISBN: 9780791846278 Darbandi, M ; Asgari, E ; Hajikaram, M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    In this paper, we study the frost formation and growth at the walls of a duct with uniform wall temperature variation. The simulation is performed for laminar flow regime considering suitable semi-empirical models incorporated with computational fluid dynamics (CFD) method. The frost growth is considered to be normal to the duct surface. Since the duct aspect ratio is high, we perform our simulations in two-dimensional zones. To simulate the frost layer properly, we solve both the energy and mass balance equations implementing some semi-empirical correlations on the frost side. At this stage, we suitably predict the required heat flux value at the solid boundary and the heat transfer...