Loading...
Search for: shear-stress
0.481 seconds
Total 207 records

    Effect of Initial Static Shear Stress on Liquefaction Resistance of Babolsar Sand Using Cyclic Simple Shear Tests

    , M.Sc. Thesis Sharif University of Technology Pouragha, Mehdi (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Initial static shear stress caused by slopes or nearby structures' foundations can affect the behavior of the soil which is concerned many investigators during previous three decade. In this investigation, the effect of initial static shear stress on the liquefaction resistance of Babolsar sand has been probed using cyclic simple shear tests. Three different initial relative densities (Dr0=20%, 40% and 60%) and three different initial normal stresses (σv0= 50, 150 and 250 kPa) were considered in tests and four various initial static shear ratios (α) ranging between 0.0 and 0.3 were applied which leads to more than 190 distinct experiments. All tests were conducted under constant volume and... 

    Study the Effect of Considering two Layered wall for Carotid Artery Bifurcation on Distribution of Hemodynamic and Non-Hemodynamic Parameters using a Fluid-Structure Interaction Method

    , M.Sc. Thesis Sharif University of Technology Nikparto, Ali (Author) ; Dehghan Firoozabadi, Bahar (Supervisor) ; Saidi, Mohammad Said (Supervisor)
    Abstract
    It is known today that arterial diseases are among the leading cause of death in modern societies. More than 50% of deaths in western countries are mainly occurred as results of these diseases, namely atherosclerosis. In order to study risk factors and to understand the full process of how arterial diseases initiate and progress, many research topics have been introduced and studied. Researchers believe that mechanical factors such as Wall Shear Stress (WSS), Pressure distribution, Cyclic strain, Back flow zones and many other factors are responsible for initiation of atherosclerosis. Different patterns of Wall Shear Stress and Strain are seen in arteries. Among other factors outlined in... 

    Effect of Initial Static Shear Stress on Liquefaction Resistance of Gravelly Soils Using Medium-Size Cyclic Triaxial and Simple Shear Tests

    , Ph.D. Dissertation Sharif University of Technology Nikoonejad, Khashayar (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    There are several case history records of liquefaction in gravelly layers with more broadly-graded particles than uniform sands which have been typically examined. Liquified deposits, in many cases, were subjected to initial static shear stress associated with the sloping ground condition or the adjacent shallow foundations prior to liquefaction. There are several graphs and recommendations for practitioners to consider the effects of the initial static shear stress on liquefaction resistance in design processes, developed based on the results of experiments on uniform clean sands. However, data for the effect of the initial static shear stress on the liquefaction strength of gravelly soils... 

    Numerical Simulation of Glucose Metabolism and Hepatocyte Viability within a Microfluidic

    , M.Sc. Thesis Sharif University of Technology Nejadnasrollah, Farzam (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    The advent of microfluidics as suitable environments for culturing cells is associated with some challenges such as shear stresses applied on the cells. In fact, hepatocytes lose their function as exposed to high shear stresses similar to other cell types. Moreover, among all factors needed for cell viability, feeding hepatocytes with adequate oxygen is of great importance due to their high demand for oxygen compared the other cells. In this thesis, different types of cultures including 2D and 3D has been used in order that shear stresses would be in allowed range and provision of hepatocytes with sufficient oxygen concentrations has been ensured as well. In addition to supplying hepatocytes... 

    Simulation of the Influence of Hypertension on Low Density Lipoprotein (Ldl) Permeation into Multilayer Coronary Bifurcation

    , M.Sc. Thesis Sharif University of Technology Moniri Piri, Mohammad (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Atherosclerosis, due to the penetration of low-density lipoprotein particles (LDL) into the arterial wall, is one of the most common and death-leading diseases in today's world. Due to its importance, extensive research has been conducted on the factors that affect this disease. In this thesis, a numerical study of the effects of Wall Shear Stress (WSS), non-Newtonian behavior of blood, different hematocrit values, and blood pressure on LDL permeation through the artery wall layers are investigated in a 4-layer wall model of a coronary bifurcation. To obtain the velocity and concentration fields in the domain, momentum, Brinkman, and mass transport equations are solved in the lumen and wall... 

    Experimental and Theoretical Investigation on Entrainment Coefficient in Density Current and Introducing Modified Richardson Number

    , M.Sc. Thesis Sharif University of Technology Maleki Tehrani , Mahdi (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Dense underflows are continuous currents, caused by interaction of two or more fluids of different density. Density currents move down-slope due their density being heavier than that of the ambient water. In this work, entrainment in 3-D density currents in a straight channel was investigated by a set of experimental studies and Theoretical calculations. Velocity components were measured using Acoustic Doppler Velocimetry (ADV). First of all, the bed shear stress was calculated by the velocity profile method and Reynolds stress method as well and showed a good agreement. By increasing the Richardson number, the bed shear stress decreases. On the other hand, the interface shear stress was... 

    Molecular Dynamics Simulation of Fluid Flow inside Carbon Nanotubes

    , M.Sc. Thesis Sharif University of Technology Moghimi Kheirabadi, Ahmad (Author) ; Mousavi, Ali (Supervisor)
    Abstract
    The transport behavior of water molecules inside a model carbon nanotube is investigated by using nonequilibrium molecular dynamics simulations. The shearing stress between the nanotube wall and the water molecules is identified as a key factor in determining the nanofluidic properties. Due to the effect of nanoscale confinement, the effective shearing stress is not only size sensitive but also strongly dependent on the fluid flow rate. Consequently, the nominal viscosity of the confined water decreases rapidly as the tube radius is reduced or when a faster flow rate is maintained. The effect of ion concentration and temperature rise on fluid flow and shearing stress is also investigated.... 

    Effects of Static Shear Stress on Liquefaction Strength of Babolsar Sand Investigated under Cyclic Simple Shear and Static Triaxial Tests

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Morteza (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Soil liquefaction is a phenomenon in which soil loses much of its strength or stiffness for a generally short time but nevertheless long enough for liquefaction to be the cause of many losses. Thus, many researchers have worked on the factors which affect this phenomenon. Effects of initial static shear stress on liquefaction strength of loose and medium dense Babolsar sand specimens were investigated in this study. Babolsar sand is fine to medium uniform sand classified as SP in USCS. Tests were performed with cyclic simple shear and static triaxial devices. All tests were performed under consolidated undrained conditions. Cyclic simple shear tests were performed under constant vertical... 

    Implementation of Shear Stress in M-K Model for Determination of the Limit Strains

    , M.Sc. Thesis Sharif University of Technology Ghazanfari, Ahmad (Author) ; Asempour, Ahmad (Supervisor) ; Hashemi, Ramin (Co-Advisor)
    Abstract
    One of the most useful methods in metal forming is Sheet Metal Forming. Use of Forming limit diagrams (FLD) in designing is a conventional method. Therefore many experimental and theoretical efforts have been carried out in order to investigate the FLDs. Many ways to obtain this FLDs and their effective parameters have been studied. But the stress state at these studies is planar which lead to an untrue model for several metal forming process such as incremental sheet forming. With this technique, the forming limit curve (FLC) appears in a different pattern, revealing an enhanced formability, compared to conventional forming techniques. Therefore, in this study, the effect of through... 

    Effects of Heart Dynamic Motion on Blood Hemodynamics and LDL Accumulation in Coronary Bifurcation

    , M.Sc. Thesis Sharif University of Technology Olyaei, Mostafa (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    In this thesis, the effect of heart dynamic motion and pulsatile inflow on blood hemodynamics and LDL permeation into the arterial wall in a 3-D coronary artery bifurcation was investigated. To determine the effect of each factor alone and simultaneous effect of both factors i.e. heart dynamic motion and pulsatile inflow, flow simulations were performed in four cases i.e. steady-static, steady-dynamic, pulsatile-static, and pulsatile-dynamic. The results of flow simulations showed that dynamic geometry and pulsatile inflow have considerable impact on temporal variations of wall shear stress (WSS), even though the effect of pulsatile inflow on WSS variation dominates over the effect of... 

    Numerical Fluid–Structure Interaction and non-Newtonian Simulation of Blood Flow in a Compliant Carotid Bifurcation

    , M.Sc. Thesis Sharif University of Technology Toloui, Mostafa (Author) ; Firoozabadi, Bahar (Supervisor) ; Saidi, Mohammad Saeid (Co-Advisor)
    Abstract
    Researchers have done a lot of studies about the use of CFS in blood flow modeling in order to improve the supplementary devices or find mechanical factors which cause artery to be diseased. Blood is a complex rheological fluid, blood flow is a pulastile flow, and blood flow field interacts with the deformable vessel wall. Thus, blood flow modeling like other biological phenomena has its own complexities such as anisotropy, vsicoelasticity, and nonlinearity in stress-strain relationship of vessel wall. To explore the role of hemodynamics in the initiation and progression of stenosis in carotid artery bifurcation, a 3D Computational Fluid Dynamics (CFD) technique is applied. The effect of... 

    Numerical Simulation of the Effects of Surface Curvature on the Cooling of Vertically-Injected Jet Layers into a Lateral Turbulent Flow

    , M.Sc. Thesis Sharif University of Technology Shalchi Tabrizi, Amir (Author) ; Taiebi Rahni, Mohammad (Supervisor) ; Ramezanizadeh, Mehdi (Supervisor)
    Abstract
    An improvement of thermal efficiency of modern gas turbines is achieved by increasing turbine inlet temperatures. One of the methods of turbine cooling is to form a film layer on the external surfaces of the blades, so that they can work at high temperatures. Most of the studies concentrate on flat plate geometries with injection through slots or rows of holes. Turbine blade surfaces usually have curvatures which seem to alter the flow field significantly on the film-cooled surfaces. However, there are few reports which investigate the effect of curvature on three-dimensional jet flow injected into the turbulent boundary layer over a curved surface. The surface curvature and the blowing... 

    Effect of Initial Static Shear Stress on Undrained Cyclic Resistance of Well Graded, Medium Dense Gravelly Soils by Cyclic Triaxial Tests

    , M.Sc. Thesis Sharif University of Technology Seyed Ghafouri, Mohammad Hosein (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Softening and liquefaction of granular soils due to earthquakes have been a major cause for much destruction in preceding decades. This phenomenon mostly occurs in sandy soils, yet its occurrence has also been reported in gravelly soils in the last three decades. Despite the numerous researches which have investigated the undrained cyclic behavior of gravelly soils during earthquakes, there are still some aspects that need further study.This research investigates the effect of initial static shear stress on undrained cyclic resistance of a well graded, medium dense gravelly soil by conducting a series of cyclic triaxial tests. The 23 performed tests are categorized into 5 groups with... 

    Development of Unsaturated Triaxial Device in Order to Conduct Stress-Controlled Tests and Study of the Hydromechanical Behavior of Collapsible Soils under Anisotropic Consolidation Case Study: Loess of Gorgan

    , M.Sc. Thesis Sharif University of Technology Soleymani Borujerdi, Saman (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Collapsible soils such as loess, which are naturally nearly dry or unsaturated, are problematic soils that experience significant decrease in volume when they are subjected to increasing moisture under loading. This type of soils are present in some parts of Iran such as province of Golestan. Most of the researches to date has tended to focus on measuring the values of collapse using conventional double oedometer. However, the study of hydromechanical behavior of this type of soils considering the effect of initial shear stress using unsaturated triaxial device has been rarely investigated by the researchers. The study on the unsaturated behavior of collapsible soils has started at Sharif... 

    Assessment of Initial Shear Stress Effect on Unsaturated Behavior of Reconstituted Collapsible Soils (A Case Study of the Gorgan Loess)

    , M.Sc. Thesis Sharif University of Technology Sadollahzadeh, Behnam (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Collapsible soils such as loess, are kinds of problematic soils which are found as the unsaturated state in nature. Due to strong inter-particle bonds, these soils have a high rather shear strength in their low water content. Upon wetting and under existence or absence of external loading these bonds are loose and soils structure undergo to collapse. These type of soils are found in various regions of Iran such as Gorgan plain. Despite previous studies in order to investigate the behavior of collapsible soils, but assessing the effect the anisotropic compression or initial shear stress on the hydromechanical behavior of these soils has been rarely investigated by the researchers. According... 

    Effect of Initial Static Shear Stress on Cyclic Resistance and Undrained Behavior of Gravelly Soils under Low Confining Pressures Using Cyclic Triaxial Apparatus

    , M.Sc. Thesis Sharif University of Technology Raeesi, Ramin (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Study on gravelly soils is one of the topics that Geotechnical Engineering researches have been concentrated on. Although several researches have enlightened the way to understand the behavior of gravelly soils, yet, there are some shortage of information about the dynamic behavior of this kind of soil in undrained condition. In this research, a series of cyclic triaxial tests have been performed using cyclic triaxial apparatus of Advanced Soil Mechanics Laboratory of Sharif University of Technology to study the effect of anisotropic consolidation (initial static shear stress) on dynamic behavior of a kind of gravel. The performed tests were divided into four groups with different initial... 

    Simulation of LDL Permeation into Multilayer Coronary Arterial Wall: Interactive Effects of Wall Shear Stress and Fluid-Structure Interaction in Hypertension

    , M.Sc. Thesis Sharif University of Technology Roustaei, Mehrdad (Author) ; Dehghan Firoozabadi, Bahar (Supervisor)
    Abstract
    Due to increased atherosclerosis-caused mortality, identification of its genesis and development is of great importance. Although, key factors of the origin of the disease is still unknown, it is widely believed that cholesterol particle penetration and accumulation in arterial wall is mainly responsible for further wall thickening and decreased rate of blood flow during a gradual progression. To date, various effective components are recognized whose simultaneous consideration would lead to a more accurate approximation of Low Density Lipoprotein (LDL) distribution within the wall. In this research, a multilayer Fluid-Structure Interaction (FSI) model is studied to simulate the penetration... 

    Optimization of Valgus Anatomy Angle of the Fractured Hip for Overcoming the Bone Unhealing Due to Increased Shear Stress at the Fixation Site, Considering Patient Bone Characteristics

    , M.Sc. Thesis Sharif University of Technology Rastegar Talzali, Sajjad (Author) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    In femoral neck fracture when the non-union happens in the fractured zone, valgus osteotomy is a surgery method to overcome bone non-union. In this method, a wedge osteotomy-with specific depth and angle- at the femoral neck is created. By changing the bone angle at the fracture site and the angle of the wedge osteotomy it is desired to convert the shear stress to the normal stress. Clinically it is believed that this would facilitate bone healing and prevent bone fracture. This surgery method also changes the anatomy of muscles due to changing hip anatomy, joint reaction force , and it’s direction. This procedure while minimizing shear stress it also reduces the blood supply to the area and... 

    Stem Cell Culture in Bioreactor

    , M.Sc. Thesis Sharif University of Technology Hosseini Zand, Hasti (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor) ; Ebrahimi, Marziye (Supervisor) ; Yaghmaei, Soheyla (Co-Advisor)
    Abstract
    Static culture systems, such as well-plates, T-Flasks and gas-permeable blood bags are restricted by their limited number of hematopoietic stem cells (HSCs) available. Hence, stirred culture systems are alternative options due to their appropriate culture conditions. Ex-vivo expansion of HSCs in suspension bioreactors has been successfully developed in recent years. The purpose of this study is comparing HSCs expansion in bioreactor with reciprocating impeller and static culture, investigation the effect of rotational speed changes in suspension culture on HSCs expansion and comparing the expansion potential of static and suspension cultures with rotational movement.
    Expansion of... 

    Continuum Modeling of Biological Growth of Atheroma in Coronary

    , M.Sc. Thesis Sharif University of Technology Hosseini, Majid (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Atherosclerosis is a vascular disorder caused by inflammation of the arterial wall. This inflammation leads to the accumulations of low-density lipoprotein (LDL) cholesterol, monocytes, macrophages and fat-laden foam cells at the site of inflammation, often referred to as plaque formation. This work uses a mathematical model for simulating the deposition of atheroma plaque in coronary arteries. In this study, the effect of time average wall shear stress (TAWSS), oscillatory shear index (OSI), non-Newtonian characteristics of blood and variable hematocrit values on the occurrence of atherosclerosis in a three-dimensional coronary artery was numerically investigated. Simulations was conducted...