Loading...
Search for: signal-to-noise-ratios
0.018 seconds
Total 229 records

    VoIP users’ Quality of Experience (QoE)Evaluation

    , Ph.D. Dissertation Sharif University of Technology Hesam Mohseni, Abdorreza (Author) ; Jahangir, Amir Hossein (Supervisor)
    Abstract
    Quality of Experience (QoE) indicates the overall quality of one service such as Voice over IP (VoIP) from users' point of view by considering several systems, human, and contextual factors. QoE measurement and prediction are more challenging than Quality of Service (QoS) which is only related to network parameters. There exist various objective and subjective methods for QoE prediction. This research investigates various features affecting QoE by proposing a comprehensive subjective evaluation by employing a large number of users. We show that many unconsidered factors including speaker specifications and signal properties, such as signal-to-noise ratio (SNR), can affect QoE so that the SNR... 

    Investigation and Implementation of Ultra High Speed Algorithms for Frequency Measurement

    , M.Sc. Thesis Sharif University of Technology Mahmoodi, Mohsen (Author) ; Pezeshk, Amirmansour (Supervisor) ; Sanaei, Esmaeel (Supervisor)
    Abstract
    The purpose of this project is to detect the instantaneous frequency of an unknown signal which has a frequency range from 2GHz to 18GHz, and its amplitude is limited. In the first step, this signal is amplified, and its amplitude is limited and then it is converted to a digital sequence using a mono-bit scheme and entered the FPGA through an ultra-fast serial port. After that, the algorithm of this project is supposed to do two main processing stages on the received stream of pulses. Detection should be performed in the first phase. It means that it should be determined whether the received pulse sequence is a random sequence made by noise or an almost regular sequence due to a sinusoidal... 

    Design and Implementation of Proton Precession Magnetometer

    , M.Sc. Thesis Sharif University of Technology Kamrani, Mohammad Hamed (Author) ; Fardmanesh, Mahdi (Supervisor)
    Abstract
    Proton precession magnetometers are one of the most sensitive scalar magnetic sensors. Their function is based on Zeeman effect and also nuclear magnetic resonance phenomena. In this project we have designed and implemented needed coils, swithching and signal detection circuits. Because of extremely high sensitivity of this sensor to induced noises and also gradient of earth’s magnetic fileld, detection of precession signal needs design of low noise electronic circuits with special EMC considerations. The implemented system in this project contains different blocks, such as switching circuit and its related control unit, amplifier, filter and frequency meter. Using this system, the obtained... 

    Routing on Stochastic Geometric Graphs

    , Ph.D. Dissertation Sharif University of Technology Haji Mirsadeghi, Mir Omid (Author) ; Daneshgar, Amir (Supervisor) ; Baccelli, François (Supervisor)

    Investigation of the Photonic Scattering Error in Radiography of Pipes and its Evaluation by Mote- carlo Simulation

    , M.Sc. Thesis Sharif University of Technology Masoumi Kolvanaq, Hojjat (Author) ; Vossoughi, Nasser (Supervisor) ; Movafeghi, Amir (Co-Advisor) ; Kermani, Abotaleb (Co-Advisor)
    Abstract
    Non-destructive testing method is for detect specimen flaws such as (crack, porosity, impure, welding defects, corrosion etc.) without destruction the specimen under inspection. Particular characteristic of radiography is an image product from specimen inside under testing where help to identity and better comprehend at flaw nature. Photon scattering is one of important factor to reduce image quality and signal to noise ratio. Scattered photons can due toexistent ingredient in the radiography environment and curvature of material transmission pipe where cause the disorder creation in the radiography images. In this research, pipe radiography simulated using the TIC and TIR radiography... 

    Design and Optimization of Magnetic Resonance Signal Detector to Enhancement of Sensitivity and SNR in Proton Precession Sensor

    , M.Sc. Thesis Sharif University of Technology Mazaheri Karvani, Jamal (Author) ; Fardmanesh, Mahdi (Supervisor)
    Abstract
    Proton precession is used in measurement of scalar magnetic field intensity. In this sensor, the magnetic field intensity is calculated through Larmor frequency using the proton precession frequency around the magnetic field. The accuracy of this sensor is in the range of picoTesla which is used for magnetic field measurement as well as the calibration of vector magnetic sensors. The signal to noise ratio in this sensor is due to the dimension and resistances of the wires and is a kind of RMS random noise. Although, changing the dimension of the wires for noise reduction and increasing the signal amplitude requires the fabrication of a bulky sensor with low power consumption. Therefore, it... 

    Efficiency Analysis of Principal Soft Computing Techniques for Noise Cancellation

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Naeim (Author) ; Banazadeh, Afshin (Supervisor)
    Abstract
    In this thesis, LMS, NLMS, RLS, ADALINE and ANFIS as five adaptive noise removal methods have been studied with a software application approach. The aim of this study is to obtain the best method to remove noise in terms of signal to noise ratio (SNR) improvement as well as the speed of convergence. In this regard, firstly by applying a frequency sweep input, which is contaminated with white noise, the performance of these algorithms are investigated. Then, an audio signal is utilized as the target input, and the performance of the corresponding algorithms have been analyzed in aspect of filter order and learning coefficient. The results show that by increasing the order of filter and... 

    Design and Implementation of Accurate Real-time Detection of Movement Intention Using Adaptive Wavelet Transform

    , M.Sc. Thesis Sharif University of Technology Chamanzar, Alireza (Author) ; Shabany, Mahdi (Supervisor) ; Sharifkhani, Mohammad ($item.subfieldsMap.e)
    Abstract
    The outlook of brain-computer interfacing (BCI) is very bright. The real-time, accurate detection of a motor movement task is critical in BCI systems. The poor signal-to-noise-ratio (SNR) of EEG signals and the ambiguity of noise generator sources in brain renders this task quite challenging. In this thesis, we demonstrate a novel algorithm for precise detection of the onset of a motor movement through identification of event-related-desynchronization (ERD) patterns. Using an adaptive matched filter technique implemented based on an optimized continues Wavelet transform by selecting an appropriate basis, we can detect single-trial ERDs. Moreover, we use a maximum-likelihood (ML),... 

    Packet Loss Replacement in VOIP Using Linear Prediction Method

    , M.Sc. Thesis Sharif University of Technology Miralavi, Reza (Author) ; Ghorshi, Mohammad Ali (Supervisor) ; Mortazavi, Mohammad (Supervisor)
    Abstract
    In real-time packet-based communication systems one major problem is misrouted or delayed packets which result in degraded perceived voice quality. If some speech packets are not available on time, the packet is known as lost packet. The easiest task of a network terminal receiver is to replace silence for the duration of lost speech segments. In a high quality communication system in order to avoid quality reduction due to packet loss a suitable method and/or algorithm is needed to replace the missing segments of speech.There are several methods which have been proposed to reduce the effect of packet loss such as Waveform Substitution, High Order Autoregressive, Linear Prediction (LP),... 

    Design and Fabrication of Self-biased High-Tc Superconducting Radiation Detector

    , M.Sc. Thesis Sharif University of Technology Yaghoubi, Mehdi (Author) ; Fardmanesh, Mehdi (Supervisor)
    Abstract
    A bolometer is a device for measuring electromagnetic waves, which uses the heating of a material with variable resistance to temperature. Due to the existing limitations and quality improvement, superconducting materials are used in the manufacture of these devices. In this dissertation, the construction and improvement of the components of a high temperature transient edge superconducting radiometer with terahertz detection capability is discussed. In the construction of these detectors, the superconducting material YBa2Cu3O7-x is used as a thermal sensor with a transition temperature of 93.5K. In order to characterize these detectors, an automatic system for measuring the voltage response... 

    Digital Modulation Recognition of Communication Signals

    , M.Sc. Thesis Sharif University of Technology Hassanpour Zahraei, Salman (Author) ; Pezeshk, Amir Mansour (Supervisor) ; Behnia, Fereidoon (Co-Advisor)
    Abstract
    Modulation Recognition of communication signals has been an important theme in the field of wireless communication. Modulation Recognition has various applications for both military and civil purposes. Recently there has been considerable attention to Digital Modulation Recognition, due to the vast application of this kind of Modulation Recognition tasks. In this thesis, we proposed a Digital Modulation Recognition Algorithm, which is able to identify various types of digital modulations in low SNRs. These include BASK, BFSK, BPSK, 4-ASK, 4-FSK, 4-PSK, 8-FSK, 8-PSK, MQAM (M=16, 32, 64). The proposed method uses a general pattern recognition scheme, consisting of a feature extraction phase... 

    Fast wavelet-based photoacoustic microscopy

    , Article Journal of the Optical Society of America A: Optics and Image Science, and Vision ; Volume 38, Issue 11 , 2021 , Pages 1673-1680 ; 10847529 (ISSN) Abbasi, H ; Mostafavi, S. M ; Kavehvash, Z ; Sharif University of Technology
    The Optical Society  2021
    Abstract
    A novel photoacoustic microscopy (PAM) structure, based on Haar wavelet patterns, is proposed in this paper. Its main goal is to mitigate the PAM imaging resolution and thus the time of its sampling process without compromising the image quality. Owing to the intrinsic nature of wavelet transform, this structure collects spatial and spectral components simultaneously, and this feature speeds up the sampling process by 33%. The selection of these patterns helps in better control of required conditions, such as multi-resolution imaging, to guarantee adequate image quality in comparison to previous microscopic structures. Simulation results prove the superior quality of the proposed approach... 

    Fast wavelet-based photoacoustic microscopy

    , Article Journal of the Optical Society of America A: Optics and Image Science, and Vision ; Volume 38, Issue 11 , 2021 , Pages 1673-1680 ; 10847529 (ISSN) Abbasi, H ; Mostafavi, S. M ; Kavehvash, Z ; Sharif University of Technology
    The Optical Society  2021
    Abstract
    A novel photoacoustic microscopy (PAM) structure, based on Haar wavelet patterns, is proposed in this paper. Its main goal is to mitigate the PAM imaging resolution and thus the time of its sampling process without compromising the image quality. Owing to the intrinsic nature of wavelet transform, this structure collects spatial and spectral components simultaneously, and this feature speeds up the sampling process by 33%. The selection of these patterns helps in better control of required conditions, such as multi-resolution imaging, to guarantee adequate image quality in comparison to previous microscopic structures. Simulation results prove the superior quality of the proposed approach... 

    Evaluation of various energy windows at different radionuclides for scatter and attenuation correction in nuclear medicine

    , Article Annals of Nuclear Medicine ; Volume 29, Issue 4 , 2015 , Pages 375-383 ; 09147187 (ISSN) Asgari, A ; Ashoor, M ; Sohrabpour, M ; Shokrani, P ; Rezaei, A ; Sharif University of Technology
    Springer-Verlag Tokyo  2015
    Abstract
    Objective: Improving signal to noise ratio (SNR) and qualified images by the various methods is very important for detecting the abnormalities at the body organs. Scatter and attenuation of photons by the organs lead to errors in radiopharmaceutical estimation as well as degradation of images. The choice of suitable energy window and the radionuclide have a key role in nuclear medicine which appearing the lowest scatter fraction as well as having a nearly constant linear attenuation coefficient as a function of phantom thickness. Methods: The energy windows of symmetrical window (SW), asymmetric window (ASW), high window (WH) and low window (WL) using Tc-99m and Sm-153 radionuclide with... 

    Resource allocation and power control for underlay device-to-device communication in fractional frequency reuse cellular networks

    , Article Telecommunication Systems ; 2016 , Pages 1-21 ; 10184864 (ISSN) Sobhi Givi, S ; Khazali, A ; Kalbkhani, H ; Shayesteh, M. G ; Solouk, V ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    The current state of device-to-device (D2D) communication in the presence of cellular network addresses two major challenges of interference as well as throughput inadequacy. Specifically, a D2D communication underlaying fractional frequency reuse (FFR) cellular network exhibits rather high interferences due to higher occurrence of band crossing within a shared spectrum. However, due to the considerable impact of D2D communications on spectral efficiency and system capacity, the remedy for those issues may include efficient techniques of interference mitigation and average spectral efficiency maximization. In this paper, we propose a resource block (RB) allocation scheme to reduce the... 

    Resource allocation and power control for underlay device-to-device communication in fractional frequency reuse cellular networks

    , Article Telecommunication Systems ; Volume 65, Issue 4 , 2017 , Pages 677-697 ; 10184864 (ISSN) Sobhi Givi, S ; Khazali, A ; Kalbkhani, H ; Shayesteh, M. G ; Solouk, V ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    The current state of device-to-device (D2D) communication in the presence of cellular network addresses two major challenges of interference as well as throughput inadequacy. Specifically, a D2D communication underlaying fractional frequency reuse (FFR) cellular network exhibits rather high interferences due to higher occurrence of band crossing within a shared spectrum. However, due to the considerable impact of D2D communications on spectral efficiency and system capacity, the remedy for those issues may include efficient techniques of interference mitigation and average spectral efficiency maximization. In this paper, we propose a resource block (RB) allocation scheme to reduce the... 

    Cell selection for load balancing in heterogeneous networks

    , Article Wireless Personal Communications ; Volume 101, Issue 1 , 2018 , Pages 305-323 ; 09296212 (ISSN) Aghazadeh, Y ; Kalbkhani, H ; Shayesteh, M. G ; Solouk, V ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    The vision of advanced long-term evolution (LTE-A) project is set to ultimate increase of network capacity in heterogeneous networks (HetNets). In HetNets with small cell configuration, a considerable majority of user devices is eventually connected to the macrocell base station (MBS), while small base stations (BSs), such as femtocell access points (FAPs), are still without any user. This results in unbalanced load and reduces the data rate of macrocell user equipment (MUE). In this paper, a method is proposed for load balancing among FAPs, while desired throughput is achieved. The proposed method uses the estimated received signal strength from different BSs and adjusted pilot signals.... 

    Joint mode selection and resource allocation in D2D communication based underlaying cellular networks

    , Article Telecommunication Systems ; Volume 67, Issue 1 , 2018 , Pages 47-62 ; 10184864 (ISSN) Sobhi Givi, S ; Khazali, A ; Kalbkhani, H ; Shayesteh, M. G ; Solouk, V ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Device-to-Device (D2D) communication technology, under the standardization of third generation partnership project and a component of the evolving fifth generation architecture, is mainly aimed to increase system capacity and data rate via providing direct communications between end devices without the use of routing data through the network. Apart from the attracting features, due to the resource sharing between cellular user equipment (CUE) and D2D user equipment (DUE) in such communications, an efficient algorithm for resource and power allocation to DUE, especially for mobile users is necessary to maintain the performance. The current paper introduces a joint mode algorithm for mobile... 

    Improved least squares approaches for differential received signal strength-based localization with unknown transmit power

    , Article Wireless Personal Communications ; Volume 110, Issue 3 , 2020 , Pages 1373-1401 Danaee, M. R ; Behnia, F ; Sharif University of Technology
    Springer  2020
    Abstract
    In this paper we consider the problem of improving unknown node localization by using differential received signal strength (DRSS). Many existing localization approaches, especially those using the least squares methods, either ignore nonlinear constraint among model parameters or utilize them inefficiently. In this paper, we develop four DRSS-based localization methods by utilizing different combinations of covariance and weight matrices. Each method constructs a two-stage procedure. During the first stage, an initial coarse position estimate is obtained. The second stage results the refined localization by accounting for nonlinear dependency among estimator variables. The proper choice... 

    Can a multi-hop link relying on untrusted amplify-and-forward relays render security?

    , Article Wireless Networks ; Volume 27 , November , 2020 , pages 795–807 Mamaghani, M. T ; Kuhestani, A ; Behroozi, H ; Sharif University of Technology
    Springer  2020
    Abstract
    Cooperative relaying is utilized as an efficient method for data communication in wireless sensor networks and the Internet of Things. However, sometimes due to the necessity of multi-hop relaying in such communication networks, it is challenging to guarantee the secrecy of cooperative transmissions when the relays may themselves be eavesdroppers, i.e., we may face with the untrusted relaying scenario where the relays are both necessary helpers and potential adversary. To obviate this issue, a new cooperative jamming scheme is proposed in this paper, in which the data can be confidentially communicated from the source to the destination through multiple untrusted relays. In our proposed...